基于深度连接MLP的节能传感器数据预测

Made Adi Paramartha Putra, Ade Pitra Hermawan, Dong-Seong Kim, Jae-Min Lee
{"title":"基于深度连接MLP的节能传感器数据预测","authors":"Made Adi Paramartha Putra, Ade Pitra Hermawan, Dong-Seong Kim, Jae-Min Lee","doi":"10.1109/ETFA45728.2021.9613213","DOIUrl":null,"url":null,"abstract":"This paper proposes a system to reduce sensor energy consumption by predicting the next sensor value. The current implementation of the smart factory utilizes wireless sensor network nodes to monitor the environmental condition in real-time. Instead of periodically exploiting those nodes, a deep learning prediction-based algorithm is proposed in the cluster head to reduce sensing times and increase sensor lifetime. The cluster head can learn the behavior of each sensor nodes based on its previous value. The proposed scenario can be combined with existing solutions in sensor failure detection and recovery to provide a robust solution in the industrial environment.","PeriodicalId":312498,"journal":{"name":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Energy Efficient-based Sensor Data Prediction using Deep Concatenate MLP\",\"authors\":\"Made Adi Paramartha Putra, Ade Pitra Hermawan, Dong-Seong Kim, Jae-Min Lee\",\"doi\":\"10.1109/ETFA45728.2021.9613213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a system to reduce sensor energy consumption by predicting the next sensor value. The current implementation of the smart factory utilizes wireless sensor network nodes to monitor the environmental condition in real-time. Instead of periodically exploiting those nodes, a deep learning prediction-based algorithm is proposed in the cluster head to reduce sensing times and increase sensor lifetime. The cluster head can learn the behavior of each sensor nodes based on its previous value. The proposed scenario can be combined with existing solutions in sensor failure detection and recovery to provide a robust solution in the industrial environment.\",\"PeriodicalId\":312498,\"journal\":{\"name\":\"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA45728.2021.9613213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA45728.2021.9613213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种通过预测下一个传感器值来降低传感器能耗的系统。目前智能工厂的实现是利用无线传感器网络节点实时监测环境状况。本文提出了一种基于深度学习预测的算法来减少感知次数,提高传感器的使用寿命,而不是周期性地利用这些节点。簇头可以根据每个传感器节点的前一个值来学习其行为。所提出的方案可以与传感器故障检测和恢复的现有解决方案相结合,为工业环境提供强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Efficient-based Sensor Data Prediction using Deep Concatenate MLP
This paper proposes a system to reduce sensor energy consumption by predicting the next sensor value. The current implementation of the smart factory utilizes wireless sensor network nodes to monitor the environmental condition in real-time. Instead of periodically exploiting those nodes, a deep learning prediction-based algorithm is proposed in the cluster head to reduce sensing times and increase sensor lifetime. The cluster head can learn the behavior of each sensor nodes based on its previous value. The proposed scenario can be combined with existing solutions in sensor failure detection and recovery to provide a robust solution in the industrial environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信