从闭项集中枚举最小生成器——论负关联规则的有效压缩

K. Iwanuma, Kento Yajima, Yoshitaka Yamamoto
{"title":"从闭项集中枚举最小生成器——论负关联规则的有效压缩","authors":"K. Iwanuma, Kento Yajima, Yoshitaka Yamamoto","doi":"10.1109/CSDE53843.2021.9718380","DOIUrl":null,"url":null,"abstract":"Negative association rules are valuable and essential for expressing various latent properties which hide in big data. The number of valid negative association rules, however, always becomes so huge, thus an effective compression method of the set of negative rules is quite important. Minimal generators are very useful for compressing the set of valid negative rules. In this paper, we study several efficient algorithms for enumerating minimal generators from given closed itemsets. Especially we propose a novel enumeration algorithm which does not use any support computation, but uses an eager hash search in a top-down tree search. We show experimental results for evaluating our enumeration algorithms, and confirm very good performance of the enumeration method without support computation.","PeriodicalId":166950,"journal":{"name":"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enumerating Minimal Generators from Closed Itemsets – Toward Effective Compression of Negative Association Rules\",\"authors\":\"K. Iwanuma, Kento Yajima, Yoshitaka Yamamoto\",\"doi\":\"10.1109/CSDE53843.2021.9718380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Negative association rules are valuable and essential for expressing various latent properties which hide in big data. The number of valid negative association rules, however, always becomes so huge, thus an effective compression method of the set of negative rules is quite important. Minimal generators are very useful for compressing the set of valid negative rules. In this paper, we study several efficient algorithms for enumerating minimal generators from given closed itemsets. Especially we propose a novel enumeration algorithm which does not use any support computation, but uses an eager hash search in a top-down tree search. We show experimental results for evaluating our enumeration algorithms, and confirm very good performance of the enumeration method without support computation.\",\"PeriodicalId\":166950,\"journal\":{\"name\":\"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSDE53843.2021.9718380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSDE53843.2021.9718380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

负关联规则对于表达隐藏在大数据中的各种潜在属性是有价值和必要的。然而,有效的负关联规则数量总是非常庞大,因此有效的负关联规则集压缩方法非常重要。最小生成器对于压缩有效的负规则集非常有用。本文研究了从给定闭项集中枚举最小生成器的几种有效算法。特别地,我们提出了一种新的枚举算法,它不使用任何支持计算,而是在自顶向下的树搜索中使用渴望哈希搜索。实验结果表明,在不支持计算的情况下,枚举方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumerating Minimal Generators from Closed Itemsets – Toward Effective Compression of Negative Association Rules
Negative association rules are valuable and essential for expressing various latent properties which hide in big data. The number of valid negative association rules, however, always becomes so huge, thus an effective compression method of the set of negative rules is quite important. Minimal generators are very useful for compressing the set of valid negative rules. In this paper, we study several efficient algorithms for enumerating minimal generators from given closed itemsets. Especially we propose a novel enumeration algorithm which does not use any support computation, but uses an eager hash search in a top-down tree search. We show experimental results for evaluating our enumeration algorithms, and confirm very good performance of the enumeration method without support computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信