Ismo Hänninen, Wayne Buckhanan, M. Niemier, G. Bernstein
{"title":"元芯片架构上的网络","authors":"Ismo Hänninen, Wayne Buckhanan, M. Niemier, G. Bernstein","doi":"10.1145/2401716.2401719","DOIUrl":null,"url":null,"abstract":"The size of systems on a chip is limited by our ability to design and fabricate such systems, staying within the appropriate costs depending on the application. In this paper, we propose a divide-and-conquer approach, Quilt Packaging®, to be utilized for reducing the fabrication costs of large digital systems by partitioning them into a quilted \"metachip\" that offers integration density and performance merits surpassing the traditional system-on-chip. The physical partitioning and the network-on-a-quilt are closely linked, and should be designed concurrently. For this purpose, we present calculations on the silicon cost of the interconnects and partitioning, discuss the network granularity, and propose a multiprocessor design around a quilted modular network, offering novel techniques to improve the performance and enable true heterogeneous integration. Specifically, the silicon costs of the quilting method are demonstrated to be around 1% of the chip area, while the yield benefits can be in the tens of percents regime. The metachip concept enables the combination of standard high-density memory technologies and wide-bus access with improved performance, typically at least doubling the amount of memory vs. single-chip CMOS. Our modular quilted network enables the integration of non-CMOS chips into the quilt.","PeriodicalId":344147,"journal":{"name":"Network on Chip Architectures","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Network on metachip architectures\",\"authors\":\"Ismo Hänninen, Wayne Buckhanan, M. Niemier, G. Bernstein\",\"doi\":\"10.1145/2401716.2401719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The size of systems on a chip is limited by our ability to design and fabricate such systems, staying within the appropriate costs depending on the application. In this paper, we propose a divide-and-conquer approach, Quilt Packaging®, to be utilized for reducing the fabrication costs of large digital systems by partitioning them into a quilted \\\"metachip\\\" that offers integration density and performance merits surpassing the traditional system-on-chip. The physical partitioning and the network-on-a-quilt are closely linked, and should be designed concurrently. For this purpose, we present calculations on the silicon cost of the interconnects and partitioning, discuss the network granularity, and propose a multiprocessor design around a quilted modular network, offering novel techniques to improve the performance and enable true heterogeneous integration. Specifically, the silicon costs of the quilting method are demonstrated to be around 1% of the chip area, while the yield benefits can be in the tens of percents regime. The metachip concept enables the combination of standard high-density memory technologies and wide-bus access with improved performance, typically at least doubling the amount of memory vs. single-chip CMOS. Our modular quilted network enables the integration of non-CMOS chips into the quilt.\",\"PeriodicalId\":344147,\"journal\":{\"name\":\"Network on Chip Architectures\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network on Chip Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2401716.2401719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network on Chip Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2401716.2401719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The size of systems on a chip is limited by our ability to design and fabricate such systems, staying within the appropriate costs depending on the application. In this paper, we propose a divide-and-conquer approach, Quilt Packaging®, to be utilized for reducing the fabrication costs of large digital systems by partitioning them into a quilted "metachip" that offers integration density and performance merits surpassing the traditional system-on-chip. The physical partitioning and the network-on-a-quilt are closely linked, and should be designed concurrently. For this purpose, we present calculations on the silicon cost of the interconnects and partitioning, discuss the network granularity, and propose a multiprocessor design around a quilted modular network, offering novel techniques to improve the performance and enable true heterogeneous integration. Specifically, the silicon costs of the quilting method are demonstrated to be around 1% of the chip area, while the yield benefits can be in the tens of percents regime. The metachip concept enables the combination of standard high-density memory technologies and wide-bus access with improved performance, typically at least doubling the amount of memory vs. single-chip CMOS. Our modular quilted network enables the integration of non-CMOS chips into the quilt.