一种精度驱动的基于码本的高效cnn压缩方法

Flavio Ponzina, Miguel Peón-Quirós, G. Ansaloni, David Atienza Alonso
{"title":"一种精度驱动的基于码本的高效cnn压缩方法","authors":"Flavio Ponzina, Miguel Peón-Quirós, G. Ansaloni, David Atienza Alonso","doi":"10.1109/COINS54846.2022.9854986","DOIUrl":null,"url":null,"abstract":"Codebook-based optimizations are a class of algorithmic-level transformations able to effectively reduce the computing and memory requirements of Convolutional Neural Networks (CNNs). This approach tightly limits the number of unique weights in each layer, allowing the storage of employed values in codebooks containing a small number of floating-point entries. Then, CNN models are represented as low-bitwidth indexes of such codebooks. This work introduces a novel iterative methodology to find highly beneficial schemes trading off accuracy and model compression in codebook-based CNNs. Our strategy can retrieve non-uniform solutions driven by an accuracy constraint embedded in the optimization loop. Our results indicate that, for a 1% accuracy degradation, our methodology can compress baseline floating-point CNN models up to 19x. Moreover, by reducing the number of memory accesses, our strategy increases energy efficiency and improves inference performance by up to 91%.","PeriodicalId":187055,"journal":{"name":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Accuracy-Driven Compression Methodology to Derive Efficient Codebook-Based CNNs\",\"authors\":\"Flavio Ponzina, Miguel Peón-Quirós, G. Ansaloni, David Atienza Alonso\",\"doi\":\"10.1109/COINS54846.2022.9854986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Codebook-based optimizations are a class of algorithmic-level transformations able to effectively reduce the computing and memory requirements of Convolutional Neural Networks (CNNs). This approach tightly limits the number of unique weights in each layer, allowing the storage of employed values in codebooks containing a small number of floating-point entries. Then, CNN models are represented as low-bitwidth indexes of such codebooks. This work introduces a novel iterative methodology to find highly beneficial schemes trading off accuracy and model compression in codebook-based CNNs. Our strategy can retrieve non-uniform solutions driven by an accuracy constraint embedded in the optimization loop. Our results indicate that, for a 1% accuracy degradation, our methodology can compress baseline floating-point CNN models up to 19x. Moreover, by reducing the number of memory accesses, our strategy increases energy efficiency and improves inference performance by up to 91%.\",\"PeriodicalId\":187055,\"journal\":{\"name\":\"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COINS54846.2022.9854986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS54846.2022.9854986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于码本的优化是一类算法级转换,能够有效地降低卷积神经网络(cnn)的计算和内存需求。这种方法严格限制了每层中唯一权值的数量,允许将已使用的值存储在包含少量浮点项的码本中。然后,将CNN模型表示为这些码本的低位宽索引。这项工作引入了一种新颖的迭代方法,以在基于码本的cnn中找到高度有益的方案,以权衡准确性和模型压缩。我们的策略可以检索由嵌入在优化循环中的精度约束驱动的非均匀解。我们的结果表明,对于1%的精度下降,我们的方法可以将基线浮点CNN模型压缩到19倍。此外,通过减少内存访问次数,我们的策略提高了能源效率,并将推理性能提高了91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Accuracy-Driven Compression Methodology to Derive Efficient Codebook-Based CNNs
Codebook-based optimizations are a class of algorithmic-level transformations able to effectively reduce the computing and memory requirements of Convolutional Neural Networks (CNNs). This approach tightly limits the number of unique weights in each layer, allowing the storage of employed values in codebooks containing a small number of floating-point entries. Then, CNN models are represented as low-bitwidth indexes of such codebooks. This work introduces a novel iterative methodology to find highly beneficial schemes trading off accuracy and model compression in codebook-based CNNs. Our strategy can retrieve non-uniform solutions driven by an accuracy constraint embedded in the optimization loop. Our results indicate that, for a 1% accuracy degradation, our methodology can compress baseline floating-point CNN models up to 19x. Moreover, by reducing the number of memory accesses, our strategy increases energy efficiency and improves inference performance by up to 91%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信