C. Lent, K. Henderson, S. Kandel, S. Corcelli, G. Snider, A. Orlov, P. Kogge, M. Niemier, Ryan C. Brown, J. Christie, Natalie A. Wasio, Rebecca C. Quardokus, R. P. Forrest, Jacob P. Peterson, Angela Silski, David A. Turner, E. Blair, Yuhui Lu
{"title":"分子细胞网络:分子电子学的非冯·诺依曼结构","authors":"C. Lent, K. Henderson, S. Kandel, S. Corcelli, G. Snider, A. Orlov, P. Kogge, M. Niemier, Ryan C. Brown, J. Christie, Natalie A. Wasio, Rebecca C. Quardokus, R. P. Forrest, Jacob P. Peterson, Angela Silski, David A. Turner, E. Blair, Yuhui Lu","doi":"10.1109/ICRC.2016.7738699","DOIUrl":null,"url":null,"abstract":"The two fundamental limitations of the present computing paradigm are power dissipation from transistor switching and the architectural von Neumann bottleneck that segregates processing from memory. We examine a cellular architecture which radically intermixes memory and processing, and which is based on a transistor-less approach to representing binary information using the arrangement of charge within the molecule. Representing bits by molecular configuration, rather than a current switch, yields the limits of functional density and low power dissipation. Matching a new computational element to a new architectural framework could enable general purpose computing to evolve along a new roadmap.","PeriodicalId":387008,"journal":{"name":"2016 IEEE International Conference on Rebooting Computing (ICRC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Molecular cellular networks: A non von Neumann architecture for molecular electronics\",\"authors\":\"C. Lent, K. Henderson, S. Kandel, S. Corcelli, G. Snider, A. Orlov, P. Kogge, M. Niemier, Ryan C. Brown, J. Christie, Natalie A. Wasio, Rebecca C. Quardokus, R. P. Forrest, Jacob P. Peterson, Angela Silski, David A. Turner, E. Blair, Yuhui Lu\",\"doi\":\"10.1109/ICRC.2016.7738699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two fundamental limitations of the present computing paradigm are power dissipation from transistor switching and the architectural von Neumann bottleneck that segregates processing from memory. We examine a cellular architecture which radically intermixes memory and processing, and which is based on a transistor-less approach to representing binary information using the arrangement of charge within the molecule. Representing bits by molecular configuration, rather than a current switch, yields the limits of functional density and low power dissipation. Matching a new computational element to a new architectural framework could enable general purpose computing to evolve along a new roadmap.\",\"PeriodicalId\":387008,\"journal\":{\"name\":\"2016 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2016.7738699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2016.7738699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular cellular networks: A non von Neumann architecture for molecular electronics
The two fundamental limitations of the present computing paradigm are power dissipation from transistor switching and the architectural von Neumann bottleneck that segregates processing from memory. We examine a cellular architecture which radically intermixes memory and processing, and which is based on a transistor-less approach to representing binary information using the arrangement of charge within the molecule. Representing bits by molecular configuration, rather than a current switch, yields the limits of functional density and low power dissipation. Matching a new computational element to a new architectural framework could enable general purpose computing to evolve along a new roadmap.