二阶代数方程的卷积神经网络手写方程识别

Luis Javier Nolasco-Alzaga, Jorge Enrique Luna-Taylor, I. Santillán, Saúl Martínez-Díaz
{"title":"二阶代数方程的卷积神经网络手写方程识别","authors":"Luis Javier Nolasco-Alzaga, Jorge Enrique Luna-Taylor, I. Santillán, Saúl Martínez-Díaz","doi":"10.1109/ICMEAE55138.2021.00035","DOIUrl":null,"url":null,"abstract":"We present in this work a method for a handwritten second-degree algebraic equations’ recognition. First, we work with a residual convolutional neural network for individual symbol recognition. Next, we merge those symbols that exceeds some overlap threshold or to have double representation. Finally, we gather all symbols that belong to the same equation using an intersect detection algorithm, by tracing multiple lines with different slops.Furthermore, we prepare an image database with more than 2000 second-degree algebraic equations handwritten by many writers. Our result shows good performance compared with other works in literature.","PeriodicalId":188801,"journal":{"name":"2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Handwritten Equation Recognition with Convolutional Neural Network for Second-degree Algebraic Equations\",\"authors\":\"Luis Javier Nolasco-Alzaga, Jorge Enrique Luna-Taylor, I. Santillán, Saúl Martínez-Díaz\",\"doi\":\"10.1109/ICMEAE55138.2021.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present in this work a method for a handwritten second-degree algebraic equations’ recognition. First, we work with a residual convolutional neural network for individual symbol recognition. Next, we merge those symbols that exceeds some overlap threshold or to have double representation. Finally, we gather all symbols that belong to the same equation using an intersect detection algorithm, by tracing multiple lines with different slops.Furthermore, we prepare an image database with more than 2000 second-degree algebraic equations handwritten by many writers. Our result shows good performance compared with other works in literature.\",\"PeriodicalId\":188801,\"journal\":{\"name\":\"2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEAE55138.2021.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE55138.2021.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种手写二阶代数方程的识别方法。首先,我们使用残差卷积神经网络进行单个符号识别。接下来,我们合并那些超过重叠阈值或具有双重表示的符号。最后,我们通过跟踪具有不同斜率的多条线,使用相交检测算法收集属于同一方程的所有符号。此外,我们准备了一个图像数据库,其中包含许多作家手写的2000多个二阶代数方程。与其他文献相比,我们的结果表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handwritten Equation Recognition with Convolutional Neural Network for Second-degree Algebraic Equations
We present in this work a method for a handwritten second-degree algebraic equations’ recognition. First, we work with a residual convolutional neural network for individual symbol recognition. Next, we merge those symbols that exceeds some overlap threshold or to have double representation. Finally, we gather all symbols that belong to the same equation using an intersect detection algorithm, by tracing multiple lines with different slops.Furthermore, we prepare an image database with more than 2000 second-degree algebraic equations handwritten by many writers. Our result shows good performance compared with other works in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信