Alessandro Fumarola, P. Narayanan, Lucas L. Sanches, Severin Sidler, Junwoo Jang, Kibong Moon, R. Shelby, H. Hwang, G. Burr
{"title":"用非易失性存储器加速机器学习:探索器件和电路的权衡","authors":"Alessandro Fumarola, P. Narayanan, Lucas L. Sanches, Severin Sidler, Junwoo Jang, Kibong Moon, R. Shelby, H. Hwang, G. Burr","doi":"10.1109/ICRC.2016.7738684","DOIUrl":null,"url":null,"abstract":"Large arrays of the same nonvolatile memories (NVM) being developed for Storage-Class Memory (SCM) - such as Phase Change Memory (PCM) and Resistance RAM (ReRAM) - can also be used in non-Von Neumann neuromorphic computational schemes, with device conductance serving as synaptic “weight.” This allows the all-important multiply-accumulate operation within these algorithms to be performed efficiently at the weight data.","PeriodicalId":387008,"journal":{"name":"2016 IEEE International Conference on Rebooting Computing (ICRC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Accelerating machine learning with Non-Volatile Memory: Exploring device and circuit tradeoffs\",\"authors\":\"Alessandro Fumarola, P. Narayanan, Lucas L. Sanches, Severin Sidler, Junwoo Jang, Kibong Moon, R. Shelby, H. Hwang, G. Burr\",\"doi\":\"10.1109/ICRC.2016.7738684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large arrays of the same nonvolatile memories (NVM) being developed for Storage-Class Memory (SCM) - such as Phase Change Memory (PCM) and Resistance RAM (ReRAM) - can also be used in non-Von Neumann neuromorphic computational schemes, with device conductance serving as synaptic “weight.” This allows the all-important multiply-accumulate operation within these algorithms to be performed efficiently at the weight data.\",\"PeriodicalId\":387008,\"journal\":{\"name\":\"2016 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2016.7738684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2016.7738684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accelerating machine learning with Non-Volatile Memory: Exploring device and circuit tradeoffs
Large arrays of the same nonvolatile memories (NVM) being developed for Storage-Class Memory (SCM) - such as Phase Change Memory (PCM) and Resistance RAM (ReRAM) - can also be used in non-Von Neumann neuromorphic computational schemes, with device conductance serving as synaptic “weight.” This allows the all-important multiply-accumulate operation within these algorithms to be performed efficiently at the weight data.