场景创建的启发式方法以启用一般循环转换

M. Palkovic, H. Corporaal, F. Catthoor
{"title":"场景创建的启发式方法以启用一般循环转换","authors":"M. Palkovic, H. Corporaal, F. Catthoor","doi":"10.1109/ISSOC.2007.4427430","DOIUrl":null,"url":null,"abstract":"Embedded system applications can have quite complex control flow graphs (CFGs). Often their control flow prohibits design time optimizations, like advanced global loop transformations. To solve this problem, and enable far more global optimizations, we could consider paths of the CFG in isolation. However coding all paths separately would cause a tremendous code copying. In practice we have to trade-off the extra optimization opportunities vs. the code size. To make this trade-off, in this paper we use so-called system scenarios. These scenarios bundle similar control paths, while still allowing sufficient optimizations. The problem treated in this paper is: what are the right scenarios; i.e., which paths should be grouped together. For complex CFGs the number of possible scenarios (ways of grouping CFG paths) is huge; it grows exponentially with the number of CFG paths. Therefore heuristics are needed to quickly discover reasonable groupings. The main contribution of this paper is that we propose and evaluate three of these heuristics on both synthetic benchmarks and on a real-life application.","PeriodicalId":244119,"journal":{"name":"2007 International Symposium on System-on-Chip","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Heuristics for Scenario Creation to Enable General Loop Transformations\",\"authors\":\"M. Palkovic, H. Corporaal, F. Catthoor\",\"doi\":\"10.1109/ISSOC.2007.4427430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded system applications can have quite complex control flow graphs (CFGs). Often their control flow prohibits design time optimizations, like advanced global loop transformations. To solve this problem, and enable far more global optimizations, we could consider paths of the CFG in isolation. However coding all paths separately would cause a tremendous code copying. In practice we have to trade-off the extra optimization opportunities vs. the code size. To make this trade-off, in this paper we use so-called system scenarios. These scenarios bundle similar control paths, while still allowing sufficient optimizations. The problem treated in this paper is: what are the right scenarios; i.e., which paths should be grouped together. For complex CFGs the number of possible scenarios (ways of grouping CFG paths) is huge; it grows exponentially with the number of CFG paths. Therefore heuristics are needed to quickly discover reasonable groupings. The main contribution of this paper is that we propose and evaluate three of these heuristics on both synthetic benchmarks and on a real-life application.\",\"PeriodicalId\":244119,\"journal\":{\"name\":\"2007 International Symposium on System-on-Chip\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on System-on-Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSOC.2007.4427430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on System-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSOC.2007.4427430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

嵌入式系统应用程序可以有相当复杂的控制流程图(cfg)。通常它们的控制流禁止设计时的优化,比如高级的全局循环转换。为了解决这个问题,并实现更多的全局优化,我们可以单独考虑CFG的路径。然而,单独编码所有路径会导致大量的代码复制。在实践中,我们必须权衡额外的优化机会和代码大小。为了进行这种权衡,在本文中我们使用了所谓的系统场景。这些场景捆绑了类似的控制路径,同时仍然允许充分的优化。本文处理的问题是:什么是正确的场景;也就是说,哪些路径应该分组在一起。对于复杂的CFG,可能的场景(分组CFG路径的方式)的数量是巨大的;它随着CFG路径的数量呈指数增长。因此,需要启发式方法来快速发现合理的分组。本文的主要贡献在于,我们在综合基准测试和实际应用中提出并评估了其中的三种启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heuristics for Scenario Creation to Enable General Loop Transformations
Embedded system applications can have quite complex control flow graphs (CFGs). Often their control flow prohibits design time optimizations, like advanced global loop transformations. To solve this problem, and enable far more global optimizations, we could consider paths of the CFG in isolation. However coding all paths separately would cause a tremendous code copying. In practice we have to trade-off the extra optimization opportunities vs. the code size. To make this trade-off, in this paper we use so-called system scenarios. These scenarios bundle similar control paths, while still allowing sufficient optimizations. The problem treated in this paper is: what are the right scenarios; i.e., which paths should be grouped together. For complex CFGs the number of possible scenarios (ways of grouping CFG paths) is huge; it grows exponentially with the number of CFG paths. Therefore heuristics are needed to quickly discover reasonable groupings. The main contribution of this paper is that we propose and evaluate three of these heuristics on both synthetic benchmarks and on a real-life application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信