{"title":"混合频率数据的高维copula分布","authors":"D. Oh, Andrew J. Patton","doi":"10.2139/ssrn.2670996","DOIUrl":null,"url":null,"abstract":"This paper proposes a new model for high-dimensional distributions of asset returns that utilizes mixed frequency data and copulas. The dependence between returns is decomposed into linear and nonlinear components, enabling the use of high frequency data to accurately forecast linear dependence, and a new class of copulas designed to capture nonlinear dependence among the resulting uncorrelated, low frequency, residuals. Estimation of the new class of copulas is conducted using composite likelihood, facilitating applications involving hundreds of variables. In- and out-of-sample tests confirm the superiority of the proposed models applied to daily returns on constituents of the S&P 100 index.","PeriodicalId":153113,"journal":{"name":"Board of Governors of the Federal Reserve System Research Series","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"High-Dimensional Copula-Based Distributions with Mixed Frequency Data\",\"authors\":\"D. Oh, Andrew J. Patton\",\"doi\":\"10.2139/ssrn.2670996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new model for high-dimensional distributions of asset returns that utilizes mixed frequency data and copulas. The dependence between returns is decomposed into linear and nonlinear components, enabling the use of high frequency data to accurately forecast linear dependence, and a new class of copulas designed to capture nonlinear dependence among the resulting uncorrelated, low frequency, residuals. Estimation of the new class of copulas is conducted using composite likelihood, facilitating applications involving hundreds of variables. In- and out-of-sample tests confirm the superiority of the proposed models applied to daily returns on constituents of the S&P 100 index.\",\"PeriodicalId\":153113,\"journal\":{\"name\":\"Board of Governors of the Federal Reserve System Research Series\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Board of Governors of the Federal Reserve System Research Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2670996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Board of Governors of the Federal Reserve System Research Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2670996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Dimensional Copula-Based Distributions with Mixed Frequency Data
This paper proposes a new model for high-dimensional distributions of asset returns that utilizes mixed frequency data and copulas. The dependence between returns is decomposed into linear and nonlinear components, enabling the use of high frequency data to accurately forecast linear dependence, and a new class of copulas designed to capture nonlinear dependence among the resulting uncorrelated, low frequency, residuals. Estimation of the new class of copulas is conducted using composite likelihood, facilitating applications involving hundreds of variables. In- and out-of-sample tests confirm the superiority of the proposed models applied to daily returns on constituents of the S&P 100 index.