基于神经网络的移动机器人轨迹跟踪

M. Lopez, S. Acevedo, L.H. Rios
{"title":"基于神经网络的移动机器人轨迹跟踪","authors":"M. Lopez, S. Acevedo, L.H. Rios","doi":"10.1109/CERMA.2008.69","DOIUrl":null,"url":null,"abstract":"This paper reviews a theory of robot motion planning and elaborates an application in which neural networks are used to take decisions regarding the orientation of a robot in its search for a destination target.The Simulink is used as a tool to implement the concepts. The neural networks allow obtaining a model of inverse dynamic, indeed the mathematical model of robot. The test was realized with different types of trajectories to validate the methodology proposed. A servosystem was adjusted optimally by the implementation of an heuristic technic.","PeriodicalId":126172,"journal":{"name":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Following of Trayectories for a Mobile Robot Using Neural Networks\",\"authors\":\"M. Lopez, S. Acevedo, L.H. Rios\",\"doi\":\"10.1109/CERMA.2008.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reviews a theory of robot motion planning and elaborates an application in which neural networks are used to take decisions regarding the orientation of a robot in its search for a destination target.The Simulink is used as a tool to implement the concepts. The neural networks allow obtaining a model of inverse dynamic, indeed the mathematical model of robot. The test was realized with different types of trajectories to validate the methodology proposed. A servosystem was adjusted optimally by the implementation of an heuristic technic.\",\"PeriodicalId\":126172,\"journal\":{\"name\":\"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2008.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2008.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文综述了机器人运动规划的理论,并详细阐述了神经网络在机器人寻找目标时决定其方向的应用。Simulink被用作实现这些概念的工具。利用神经网络可以得到逆动力学模型,即机器人的数学模型。用不同类型的轨迹进行了测试,以验证所提出的方法。采用启发式技术对伺服系统进行优化调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Following of Trayectories for a Mobile Robot Using Neural Networks
This paper reviews a theory of robot motion planning and elaborates an application in which neural networks are used to take decisions regarding the orientation of a robot in its search for a destination target.The Simulink is used as a tool to implement the concepts. The neural networks allow obtaining a model of inverse dynamic, indeed the mathematical model of robot. The test was realized with different types of trajectories to validate the methodology proposed. A servosystem was adjusted optimally by the implementation of an heuristic technic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信