大数据监测下基于FastDTW的铁路道岔智能诊断研究

Yuxin Gao, Yong Yang, Yuan Ma, Weixiang Xu
{"title":"大数据监测下基于FastDTW的铁路道岔智能诊断研究","authors":"Yuxin Gao, Yong Yang, Yuan Ma, Weixiang Xu","doi":"10.1109/iceert53919.2021.00059","DOIUrl":null,"url":null,"abstract":"Turnout equipment is a key component to ensure the safe operation of trains. How to identify turnout faults is one of the important tasks of railway engineering departments and electrical departments. We used fast dynamic time warping (FastDTW) algorithm to analyze the similarity of mechanical characteristic data during turnout actions, and then realized the intelligent diagnosis of turnout faults under the background of big data. Experiments show that the algorithm for predicting turnout faults based on FastDTW is an accurate and effective method, which can improve the key technology of intelligent monitoring and early warning of the whole process of turnout movement.","PeriodicalId":278054,"journal":{"name":"2021 International Conference on Information Control, Electrical Engineering and Rail Transit (ICEERT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Intelligent Diagnosis of Railway Turnout Based on FastDTW under Big Data Monitoring\",\"authors\":\"Yuxin Gao, Yong Yang, Yuan Ma, Weixiang Xu\",\"doi\":\"10.1109/iceert53919.2021.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turnout equipment is a key component to ensure the safe operation of trains. How to identify turnout faults is one of the important tasks of railway engineering departments and electrical departments. We used fast dynamic time warping (FastDTW) algorithm to analyze the similarity of mechanical characteristic data during turnout actions, and then realized the intelligent diagnosis of turnout faults under the background of big data. Experiments show that the algorithm for predicting turnout faults based on FastDTW is an accurate and effective method, which can improve the key technology of intelligent monitoring and early warning of the whole process of turnout movement.\",\"PeriodicalId\":278054,\"journal\":{\"name\":\"2021 International Conference on Information Control, Electrical Engineering and Rail Transit (ICEERT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Control, Electrical Engineering and Rail Transit (ICEERT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iceert53919.2021.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Control, Electrical Engineering and Rail Transit (ICEERT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iceert53919.2021.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

道岔设备是保证列车安全运行的关键部件。如何识别道岔故障是铁路工程部门和电气部门的重要任务之一。采用快速动态时间翘曲(FastDTW)算法分析道岔动作过程中力学特征数据的相似性,实现大数据背景下道岔故障的智能诊断。实验表明,基于FastDTW的道岔故障预测算法是一种准确有效的预测方法,可以提高道岔运动全过程智能监测预警的关键技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Intelligent Diagnosis of Railway Turnout Based on FastDTW under Big Data Monitoring
Turnout equipment is a key component to ensure the safe operation of trains. How to identify turnout faults is one of the important tasks of railway engineering departments and electrical departments. We used fast dynamic time warping (FastDTW) algorithm to analyze the similarity of mechanical characteristic data during turnout actions, and then realized the intelligent diagnosis of turnout faults under the background of big data. Experiments show that the algorithm for predicting turnout faults based on FastDTW is an accurate and effective method, which can improve the key technology of intelligent monitoring and early warning of the whole process of turnout movement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信