四旋翼飞行器模糊控制整定设计的新确定性优化算法

Halima Housny, E. Chater, H. El Fadil
{"title":"四旋翼飞行器模糊控制整定设计的新确定性优化算法","authors":"Halima Housny, E. Chater, H. El Fadil","doi":"10.1109/ICOA.2019.8727622","DOIUrl":null,"url":null,"abstract":"Using an optimization algorithm to find the optimal controller parameters is still a big challenge. This paper proposes a new algorithm to tune the scaling gains of a fuzzy logic controller. Based on a deterministic choice of the population, the proposed algorithm allows determining the best parameters of a fuzzy logic controller that is used to stabilize the position of a quadrotor system when tracking specified trajectories. In addition, using simulation tools, it is shown that a fuzzy controller which is optimized by the proposed algorithm could give similar performances to the case of particle swarm optimization design. Thus, from these simulation results, it is also shown that this tuning approach actually gives fast and complete way to optimize any controller, which makes the new deterministic algorithm a good addition to solving controller tuning problems.","PeriodicalId":109940,"journal":{"name":"2019 5th International Conference on Optimization and Applications (ICOA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"New Deterministic Optimization Algorithm for Fuzzy Control Tuning Design of a Quadrotor\",\"authors\":\"Halima Housny, E. Chater, H. El Fadil\",\"doi\":\"10.1109/ICOA.2019.8727622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using an optimization algorithm to find the optimal controller parameters is still a big challenge. This paper proposes a new algorithm to tune the scaling gains of a fuzzy logic controller. Based on a deterministic choice of the population, the proposed algorithm allows determining the best parameters of a fuzzy logic controller that is used to stabilize the position of a quadrotor system when tracking specified trajectories. In addition, using simulation tools, it is shown that a fuzzy controller which is optimized by the proposed algorithm could give similar performances to the case of particle swarm optimization design. Thus, from these simulation results, it is also shown that this tuning approach actually gives fast and complete way to optimize any controller, which makes the new deterministic algorithm a good addition to solving controller tuning problems.\",\"PeriodicalId\":109940,\"journal\":{\"name\":\"2019 5th International Conference on Optimization and Applications (ICOA)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th International Conference on Optimization and Applications (ICOA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOA.2019.8727622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA.2019.8727622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

使用优化算法找到最优控制器参数仍然是一个很大的挑战。本文提出了一种新的模糊控制器尺度增益调整算法。基于种群的确定性选择,该算法允许确定模糊逻辑控制器的最佳参数,该控制器用于在跟踪指定轨迹时稳定四旋翼系统的位置。此外,利用仿真工具表明,采用该算法优化的模糊控制器可以获得与粒子群优化设计相似的性能。因此,从这些仿真结果也表明,这种整定方法实际上为任何控制器的优化提供了快速和完整的方法,这使得新的确定性算法成为解决控制器整定问题的一个很好的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Deterministic Optimization Algorithm for Fuzzy Control Tuning Design of a Quadrotor
Using an optimization algorithm to find the optimal controller parameters is still a big challenge. This paper proposes a new algorithm to tune the scaling gains of a fuzzy logic controller. Based on a deterministic choice of the population, the proposed algorithm allows determining the best parameters of a fuzzy logic controller that is used to stabilize the position of a quadrotor system when tracking specified trajectories. In addition, using simulation tools, it is shown that a fuzzy controller which is optimized by the proposed algorithm could give similar performances to the case of particle swarm optimization design. Thus, from these simulation results, it is also shown that this tuning approach actually gives fast and complete way to optimize any controller, which makes the new deterministic algorithm a good addition to solving controller tuning problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信