当前偏向代理的分块任务

J. Halpern, Aditya Saraf
{"title":"当前偏向代理的分块任务","authors":"J. Halpern, Aditya Saraf","doi":"10.1145/3580507.3597816","DOIUrl":null,"url":null,"abstract":"Everyone puts things off sometimes. How can we combat this tendency to procrastinate? A well-known technique used by instructors is to break up a large project into more manageable chunks. But how should this be done best? Here we study the process of chunking using the graph-theoretic model of present bias introduced by Kleinberg and Oren [2014]. We first analyze how to optimally chunk single edges within a task graph, given a limited number of chunks. We show that for edges on the shortest path, the optimal chunking makes initial chunks easy and later chunks progressively harder. For edges not on the shortest path, optimal chunking is significantly more complex, but we provide an efficient algorithm that chunks the edge optimally. We then use our optimal edge-chunking algorithm to optimally chunk task graphs. We show that with a linear number of chunks on each edge, the biased agent's cost can be exponentially lowered, to within a constant factor of the true cheapest path. Finally, we extend our model to the case where a task designer must chunk a graph for multiple types of agents simultaneously. The problem grows significantly more complex with even two types of agents, but we provide optimal graph chunking algorithms for two types. Our work highlights the efficacy of chunking as a means to combat present bias.","PeriodicalId":210555,"journal":{"name":"Proceedings of the 24th ACM Conference on Economics and Computation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chunking Tasks for Present-Biased Agents\",\"authors\":\"J. Halpern, Aditya Saraf\",\"doi\":\"10.1145/3580507.3597816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Everyone puts things off sometimes. How can we combat this tendency to procrastinate? A well-known technique used by instructors is to break up a large project into more manageable chunks. But how should this be done best? Here we study the process of chunking using the graph-theoretic model of present bias introduced by Kleinberg and Oren [2014]. We first analyze how to optimally chunk single edges within a task graph, given a limited number of chunks. We show that for edges on the shortest path, the optimal chunking makes initial chunks easy and later chunks progressively harder. For edges not on the shortest path, optimal chunking is significantly more complex, but we provide an efficient algorithm that chunks the edge optimally. We then use our optimal edge-chunking algorithm to optimally chunk task graphs. We show that with a linear number of chunks on each edge, the biased agent's cost can be exponentially lowered, to within a constant factor of the true cheapest path. Finally, we extend our model to the case where a task designer must chunk a graph for multiple types of agents simultaneously. The problem grows significantly more complex with even two types of agents, but we provide optimal graph chunking algorithms for two types. Our work highlights the efficacy of chunking as a means to combat present bias.\",\"PeriodicalId\":210555,\"journal\":{\"name\":\"Proceedings of the 24th ACM Conference on Economics and Computation\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM Conference on Economics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3580507.3597816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3580507.3597816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

每个人都有拖延的时候。我们怎样才能克服这种拖延的倾向呢?教师们使用的一个众所周知的技巧是把一个大项目分解成更容易管理的小块。但如何才能做到最好呢?在这里,我们使用Kleinberg和Oren[2014]引入的当前偏差的图论模型来研究分块过程。我们首先分析如何在给定有限数量的块的情况下,对任务图中的单个边进行最优块。我们表明,对于最短路径上的边,最优分块使初始的块变得容易,后来的块变得越来越难。对于不在最短路径上的边,最优分块要复杂得多,但我们提供了一种最优分块边的有效算法。然后,我们使用我们的最优边缘分块算法来优化分块任务图。我们证明,在每条边上有线性数量的块,有偏差的智能体的成本可以指数降低,在真正最便宜路径的常数因子内。最后,我们将我们的模型扩展到任务设计者必须同时为多种类型的代理划分图形的情况。即使是两种类型的代理,问题也会变得更加复杂,但我们为两种类型提供了最佳的图分块算法。我们的工作强调了分块作为对抗当前偏见的一种手段的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chunking Tasks for Present-Biased Agents
Everyone puts things off sometimes. How can we combat this tendency to procrastinate? A well-known technique used by instructors is to break up a large project into more manageable chunks. But how should this be done best? Here we study the process of chunking using the graph-theoretic model of present bias introduced by Kleinberg and Oren [2014]. We first analyze how to optimally chunk single edges within a task graph, given a limited number of chunks. We show that for edges on the shortest path, the optimal chunking makes initial chunks easy and later chunks progressively harder. For edges not on the shortest path, optimal chunking is significantly more complex, but we provide an efficient algorithm that chunks the edge optimally. We then use our optimal edge-chunking algorithm to optimally chunk task graphs. We show that with a linear number of chunks on each edge, the biased agent's cost can be exponentially lowered, to within a constant factor of the true cheapest path. Finally, we extend our model to the case where a task designer must chunk a graph for multiple types of agents simultaneously. The problem grows significantly more complex with even two types of agents, but we provide optimal graph chunking algorithms for two types. Our work highlights the efficacy of chunking as a means to combat present bias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信