移动车辆支撑结构不一致性循环耐久性预测及风险分析

Alexander N. Panov
{"title":"移动车辆支撑结构不一致性循环耐久性预测及风险分析","authors":"Alexander N. Panov","doi":"10.17816/0321-4443-2021-6-45-53","DOIUrl":null,"url":null,"abstract":"The reliability and safety of mobile vehicles is determined by their carrier system. Achieving a low probability of failure of structures and reducing the cost of equipment is possible by changing the traditional methods of predicting reliability and applying risk analysis, as well as using risk-based design. The aim of the work is to develop methods for predicting the cyclic durability of elements, fastening prefabricated load-bearing structures and analysis to achieve acceptable risks of mobile vehicles at the stages of risk-oriented design. The methods and standards were developed in order to provide methodological support of risk-based design. Those allow designers and engineers to use new methods of design and calculation of tractor and agricultural machinery. It is proposed to introduce into the existing notation system of design and technological documentation the identifiers for parameters as the priority indicators and to achieve when designing the probability of occurrence of each potential cause of failure up to a given level of risk, taking into account priority. The tool for achieving low failure probabilities is the construction of diagrams of cause-and-effect relationships of failures is the source of cause and effect based on the method of deduction and induction. A calculation and experimental method for predicting reliability, according to the criterion of cyclic durability of load-bearing structures and fasteners was developed. The technique is based on local modeling of damage initiation zones, taking into account the influence of design and technological factors of production, simulating the load mode of a mobile vehicle, its damage zones. The following are used for the calculation: finite element method, experimental load assessment, fatigue resistance characteristics of load-bearing elements, rivets and bolts, damage accumulation hypotheses. Risk analysis is carried out using the FMEA methodology. As a result of the risk analysis in a probabilistic formulation, a conclusion is made about the possible damage to the supplier the number of mobile vehicles that will not ensure the fulfillment of the stated requirements for a given resource and warranty mileage. Thus, data for assessing risks and making a decision on the advisability of redesigning equipment appear. The created methodological support for predicting cyclic durability and risk analysis for the implementation of risk-based design allows: to eliminate the uncompetitive level of product quality and production quality, as well as low efficiency and labor productivity; apply new design technologies, design and production preparation methods that reduce development time. The developed methods and means of the risk-based approach have been widely tested and are used in the practice of auto-tractor-agricultural machine building.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of cyclic durability and risk analysis of inconsistencies in the supporting structures of mobile vehicles\",\"authors\":\"Alexander N. Panov\",\"doi\":\"10.17816/0321-4443-2021-6-45-53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliability and safety of mobile vehicles is determined by their carrier system. Achieving a low probability of failure of structures and reducing the cost of equipment is possible by changing the traditional methods of predicting reliability and applying risk analysis, as well as using risk-based design. The aim of the work is to develop methods for predicting the cyclic durability of elements, fastening prefabricated load-bearing structures and analysis to achieve acceptable risks of mobile vehicles at the stages of risk-oriented design. The methods and standards were developed in order to provide methodological support of risk-based design. Those allow designers and engineers to use new methods of design and calculation of tractor and agricultural machinery. It is proposed to introduce into the existing notation system of design and technological documentation the identifiers for parameters as the priority indicators and to achieve when designing the probability of occurrence of each potential cause of failure up to a given level of risk, taking into account priority. The tool for achieving low failure probabilities is the construction of diagrams of cause-and-effect relationships of failures is the source of cause and effect based on the method of deduction and induction. A calculation and experimental method for predicting reliability, according to the criterion of cyclic durability of load-bearing structures and fasteners was developed. The technique is based on local modeling of damage initiation zones, taking into account the influence of design and technological factors of production, simulating the load mode of a mobile vehicle, its damage zones. The following are used for the calculation: finite element method, experimental load assessment, fatigue resistance characteristics of load-bearing elements, rivets and bolts, damage accumulation hypotheses. Risk analysis is carried out using the FMEA methodology. As a result of the risk analysis in a probabilistic formulation, a conclusion is made about the possible damage to the supplier the number of mobile vehicles that will not ensure the fulfillment of the stated requirements for a given resource and warranty mileage. Thus, data for assessing risks and making a decision on the advisability of redesigning equipment appear. The created methodological support for predicting cyclic durability and risk analysis for the implementation of risk-based design allows: to eliminate the uncompetitive level of product quality and production quality, as well as low efficiency and labor productivity; apply new design technologies, design and production preparation methods that reduce development time. The developed methods and means of the risk-based approach have been widely tested and are used in the practice of auto-tractor-agricultural machine building.\",\"PeriodicalId\":136662,\"journal\":{\"name\":\"Traktory i sel hozmashiny\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traktory i sel hozmashiny\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/0321-4443-2021-6-45-53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traktory i sel hozmashiny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/0321-4443-2021-6-45-53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

移动车辆的可靠性和安全性取决于其载体系统。通过改变传统的可靠性预测方法和应用风险分析方法,以及采用基于风险的设计,实现结构低故障概率和降低设备成本是可能的。这项工作的目的是开发预测元件循环耐久性的方法,紧固预制承重结构和分析,以实现移动车辆在风险导向设计阶段的可接受风险。这些方法和标准的制定是为了为基于风险的设计提供方法学支持。这些允许设计师和工程师使用新的方法来设计和计算拖拉机和农业机械。建议在现有的设计和技术文档符号系统中引入参数标识符作为优先级指标,并在设计时考虑优先级,实现每个潜在故障原因发生的概率达到给定的风险水平。实现低故障概率的工具是建立故障的因果关系图,是基于演绎和归纳法的因果来源。根据承载结构和紧固件的循环耐久性准则,提出了一种可靠度预测的计算和试验方法。该技术是在损伤起爆区域局部建模的基础上,考虑设计和生产工艺因素的影响,模拟移动车辆的荷载模式、损伤区域。计算方法包括:有限元法、试验荷载评估、承重构件抗疲劳特性、铆钉螺栓、损伤累积假设。使用FMEA方法进行风险分析。通过概率公式中的风险分析,得出了在给定资源和保修里程下,不能保证满足规定要求的移动车辆数量对供应商可能造成的损害的结论。这样,就有了评估风险和决定重新设计设备是否明智的数据。所创建的方法支持预测循环耐久性和风险分析,以实现基于风险的设计,允许:消除产品质量和生产质量的无竞争力水平,以及低效率和劳动生产率;应用新的设计技术,设计和生产准备方法,减少开发时间。所开发的基于风险的方法和手段已经在汽车拖拉机农机制造实践中得到了广泛的检验和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of cyclic durability and risk analysis of inconsistencies in the supporting structures of mobile vehicles
The reliability and safety of mobile vehicles is determined by their carrier system. Achieving a low probability of failure of structures and reducing the cost of equipment is possible by changing the traditional methods of predicting reliability and applying risk analysis, as well as using risk-based design. The aim of the work is to develop methods for predicting the cyclic durability of elements, fastening prefabricated load-bearing structures and analysis to achieve acceptable risks of mobile vehicles at the stages of risk-oriented design. The methods and standards were developed in order to provide methodological support of risk-based design. Those allow designers and engineers to use new methods of design and calculation of tractor and agricultural machinery. It is proposed to introduce into the existing notation system of design and technological documentation the identifiers for parameters as the priority indicators and to achieve when designing the probability of occurrence of each potential cause of failure up to a given level of risk, taking into account priority. The tool for achieving low failure probabilities is the construction of diagrams of cause-and-effect relationships of failures is the source of cause and effect based on the method of deduction and induction. A calculation and experimental method for predicting reliability, according to the criterion of cyclic durability of load-bearing structures and fasteners was developed. The technique is based on local modeling of damage initiation zones, taking into account the influence of design and technological factors of production, simulating the load mode of a mobile vehicle, its damage zones. The following are used for the calculation: finite element method, experimental load assessment, fatigue resistance characteristics of load-bearing elements, rivets and bolts, damage accumulation hypotheses. Risk analysis is carried out using the FMEA methodology. As a result of the risk analysis in a probabilistic formulation, a conclusion is made about the possible damage to the supplier the number of mobile vehicles that will not ensure the fulfillment of the stated requirements for a given resource and warranty mileage. Thus, data for assessing risks and making a decision on the advisability of redesigning equipment appear. The created methodological support for predicting cyclic durability and risk analysis for the implementation of risk-based design allows: to eliminate the uncompetitive level of product quality and production quality, as well as low efficiency and labor productivity; apply new design technologies, design and production preparation methods that reduce development time. The developed methods and means of the risk-based approach have been widely tested and are used in the practice of auto-tractor-agricultural machine building.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信