视频对象行为的统计建模,以改进视觉监控中的目标跟踪

G. Yin, D. Bruckner, G. Zucker
{"title":"视频对象行为的统计建模,以改进视觉监控中的目标跟踪","authors":"G. Yin, D. Bruckner, G. Zucker","doi":"10.1109/AFRCON.2009.5308178","DOIUrl":null,"url":null,"abstract":"This paper describes a post processing method for detected video objects to enhance the quality of detection. Starting with a basic set of video parameters (such as video frame and time, label of objects, the objects position in pixel, the width and height of object's bounding box) statistical parameters (such as arithmetic mean and standard deviation) about features are computed and with these parameters different statistical models are built. These models can be used to estimate the “normality” of an object's behavior.","PeriodicalId":122830,"journal":{"name":"AFRICON 2009","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Statistical modeling of video object's behavior for improved object tracking in visual surveillance\",\"authors\":\"G. Yin, D. Bruckner, G. Zucker\",\"doi\":\"10.1109/AFRCON.2009.5308178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a post processing method for detected video objects to enhance the quality of detection. Starting with a basic set of video parameters (such as video frame and time, label of objects, the objects position in pixel, the width and height of object's bounding box) statistical parameters (such as arithmetic mean and standard deviation) about features are computed and with these parameters different statistical models are built. These models can be used to estimate the “normality” of an object's behavior.\",\"PeriodicalId\":122830,\"journal\":{\"name\":\"AFRICON 2009\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AFRICON 2009\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFRCON.2009.5308178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AFRICON 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFRCON.2009.5308178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种对检测到的视频对象进行后处理以提高检测质量的方法。从一组基本的视频参数(如视频帧和时间、物体的标签、物体在像素中的位置、物体边界框的宽度和高度)开始,计算特征的统计参数(如算术平均值和标准差),并利用这些参数建立不同的统计模型。这些模型可用于估计对象行为的“正常性”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical modeling of video object's behavior for improved object tracking in visual surveillance
This paper describes a post processing method for detected video objects to enhance the quality of detection. Starting with a basic set of video parameters (such as video frame and time, label of objects, the objects position in pixel, the width and height of object's bounding box) statistical parameters (such as arithmetic mean and standard deviation) about features are computed and with these parameters different statistical models are built. These models can be used to estimate the “normality” of an object's behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信