一种基于频繁矩阵的先验算法

Kun Niu, Haizhen Jiao, Zhipeng Gao, Cheng Chen, Huiyang Zhang
{"title":"一种基于频繁矩阵的先验算法","authors":"Kun Niu, Haizhen Jiao, Zhipeng Gao, Cheng Chen, Huiyang Zhang","doi":"10.1145/3035012.3035019","DOIUrl":null,"url":null,"abstract":"Apriori is the most famous frequent pattern mining method. It scans dataset repeatedly and generate item sets by bottom-top approach. In order to reduce time complexity, we proposed a modified algorithm named as Frequent Matrix Apriori (FMA). Firstly, FMA scans the dataset only once to store frequent item information in a frequent matrix. Then, FMA discretize the matrix by the minimum support parameter which is generated automatically. Thirdly, it scans the discretized frequent matrix and find the most frequent item sets recursively. Experimental results proved that FMA is more effective than Apriori on time consuming with similar accuracy.","PeriodicalId":130142,"journal":{"name":"Proceedings of the 5th International Conference on Bioinformatics and Computational Biology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A developed apriori algorithm based on frequent matrix\",\"authors\":\"Kun Niu, Haizhen Jiao, Zhipeng Gao, Cheng Chen, Huiyang Zhang\",\"doi\":\"10.1145/3035012.3035019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Apriori is the most famous frequent pattern mining method. It scans dataset repeatedly and generate item sets by bottom-top approach. In order to reduce time complexity, we proposed a modified algorithm named as Frequent Matrix Apriori (FMA). Firstly, FMA scans the dataset only once to store frequent item information in a frequent matrix. Then, FMA discretize the matrix by the minimum support parameter which is generated automatically. Thirdly, it scans the discretized frequent matrix and find the most frequent item sets recursively. Experimental results proved that FMA is more effective than Apriori on time consuming with similar accuracy.\",\"PeriodicalId\":130142,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Bioinformatics and Computational Biology\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3035012.3035019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3035012.3035019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

Apriori是最著名的频繁模式挖掘方法。重复扫描数据集,采用自下而上的方法生成项目集。为了降低时间复杂度,我们提出了一种改进算法——频繁矩阵Apriori (frequency Matrix Apriori, FMA)。首先,FMA只扫描数据集一次,将频繁项信息存储在频繁矩阵中。然后,利用自动生成的最小支持参数对矩阵进行离散化。再次,对离散化后的频繁矩阵进行扫描,递归地找到最频繁的项集。实验结果表明,FMA比Apriori在准确率相近的情况下,在时间消耗上更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A developed apriori algorithm based on frequent matrix
Apriori is the most famous frequent pattern mining method. It scans dataset repeatedly and generate item sets by bottom-top approach. In order to reduce time complexity, we proposed a modified algorithm named as Frequent Matrix Apriori (FMA). Firstly, FMA scans the dataset only once to store frequent item information in a frequent matrix. Then, FMA discretize the matrix by the minimum support parameter which is generated automatically. Thirdly, it scans the discretized frequent matrix and find the most frequent item sets recursively. Experimental results proved that FMA is more effective than Apriori on time consuming with similar accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信