集成SiC MOSFET模块的兆赫高压隔离DC/DC变换器的分析和损耗比较

Suxuan Guo, Pengkun Liu, Ruiyang Yu, Liqi Zhang, A. Huang
{"title":"集成SiC MOSFET模块的兆赫高压隔离DC/DC变换器的分析和损耗比较","authors":"Suxuan Guo, Pengkun Liu, Ruiyang Yu, Liqi Zhang, A. Huang","doi":"10.1109/WIPDA.2016.7799955","DOIUrl":null,"url":null,"abstract":"Silicon Carbide (SiC) MOSFETs are being increasingly utilized in medium and high power electronics converters (>1 kW) because of the significantly lower switching and conduction losses when compared with conventional power switches such as the Si IGBT. SiC MOSFET based converters operating at high frequency can achieve high efficiency and high power density at the same time. Minimum switching loss can be achieved in the SiC MOSFET with carefully designed gate driving condition and DC link layout, such as the integrated SiC MOSFET module discussed in this paper. Multi-megahertz switching frequency could be realized by the proposed SiC MOSFET module with proper soft switching topology. This paper analyzes three isolated DC/DC converters, namely the asymmetrical half bridge converter, phase shift full bridge converter, and LLC resonant converter. The loss model of the SiC MOSFET is developed and utilized in the analysis. Comparisons are carried out from the device loss and soft switching requirement point of view. The LLC resonant converter is deemed more suitable for multi-megahertz application. A 4.5 kW 1.2 MHz LLC resonant converter prototype is developed and it demonstrates a peak efficiency of 97% at 4 kW.","PeriodicalId":431347,"journal":{"name":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Analysis and loss comparison of megahertz high voltage isolated DC/DC converters utilizing integrated SiC MOSFET module\",\"authors\":\"Suxuan Guo, Pengkun Liu, Ruiyang Yu, Liqi Zhang, A. Huang\",\"doi\":\"10.1109/WIPDA.2016.7799955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon Carbide (SiC) MOSFETs are being increasingly utilized in medium and high power electronics converters (>1 kW) because of the significantly lower switching and conduction losses when compared with conventional power switches such as the Si IGBT. SiC MOSFET based converters operating at high frequency can achieve high efficiency and high power density at the same time. Minimum switching loss can be achieved in the SiC MOSFET with carefully designed gate driving condition and DC link layout, such as the integrated SiC MOSFET module discussed in this paper. Multi-megahertz switching frequency could be realized by the proposed SiC MOSFET module with proper soft switching topology. This paper analyzes three isolated DC/DC converters, namely the asymmetrical half bridge converter, phase shift full bridge converter, and LLC resonant converter. The loss model of the SiC MOSFET is developed and utilized in the analysis. Comparisons are carried out from the device loss and soft switching requirement point of view. The LLC resonant converter is deemed more suitable for multi-megahertz application. A 4.5 kW 1.2 MHz LLC resonant converter prototype is developed and it demonstrates a peak efficiency of 97% at 4 kW.\",\"PeriodicalId\":431347,\"journal\":{\"name\":\"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2016.7799955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2016.7799955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

碳化硅(SiC) mosfet越来越多地用于中大功率电子转换器(> 1kw),因为与传统的功率开关(如Si IGBT)相比,碳化硅(SiC) mosfet的开关和传导损耗显着降低。基于SiC MOSFET的高频变换器可以同时实现高效率和高功率密度。通过精心设计栅极驱动条件和直流链路布局,SiC MOSFET可以实现最小的开关损耗,例如本文讨论的集成SiC MOSFET模块。通过适当的软开关拓扑结构,所提出的SiC MOSFET模块可以实现多兆赫的开关频率。本文分析了三种隔离型DC/DC变换器,即非对称半桥变换器、移相全桥变换器和LLC谐振变换器。建立了SiC MOSFET的损耗模型,并将其应用于分析中。从器件损耗和软开关需求的角度进行了比较。认为LLC谐振变换器更适合于多兆赫应用。开发了4.5 kW 1.2 MHz LLC谐振变换器原型,并在4 kW时显示出97%的峰值效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and loss comparison of megahertz high voltage isolated DC/DC converters utilizing integrated SiC MOSFET module
Silicon Carbide (SiC) MOSFETs are being increasingly utilized in medium and high power electronics converters (>1 kW) because of the significantly lower switching and conduction losses when compared with conventional power switches such as the Si IGBT. SiC MOSFET based converters operating at high frequency can achieve high efficiency and high power density at the same time. Minimum switching loss can be achieved in the SiC MOSFET with carefully designed gate driving condition and DC link layout, such as the integrated SiC MOSFET module discussed in this paper. Multi-megahertz switching frequency could be realized by the proposed SiC MOSFET module with proper soft switching topology. This paper analyzes three isolated DC/DC converters, namely the asymmetrical half bridge converter, phase shift full bridge converter, and LLC resonant converter. The loss model of the SiC MOSFET is developed and utilized in the analysis. Comparisons are carried out from the device loss and soft switching requirement point of view. The LLC resonant converter is deemed more suitable for multi-megahertz application. A 4.5 kW 1.2 MHz LLC resonant converter prototype is developed and it demonstrates a peak efficiency of 97% at 4 kW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信