基于GPU CUDA的图像绘制交替方向隐式(ADI)方法的计算加速

Mutaqin Akbar, Pranowo, Suyoto Magister
{"title":"基于GPU CUDA的图像绘制交替方向隐式(ADI)方法的计算加速","authors":"Mutaqin Akbar, Pranowo, Suyoto Magister","doi":"10.1109/ICCEREC.2017.8226691","DOIUrl":null,"url":null,"abstract":"This paper presents a computational acceleration of image inpainting using parallel processing based on Graphics Processing Unit (GPU) Compute Unified Device Architecture (CUDA). We use parabolic partial differential equation (PDE) called heat equation as the model equation. The heat equation is discretized numerically using Finite Difference method. Semi-algebraic equation that formed then solved by using Alternating-Direction Implicit (ADI) scheme. The numerical algorithm is implemented in GPU CUDA parallel computing to speed up the computational time. The computational process of the inpainting can be done using larger time-step. The computational time can be accelerated to 5.86 times faster using an image with 2736×1824 resolution.","PeriodicalId":328054,"journal":{"name":"2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computational acceleration of image inpainting Alternating-Direction Implicit (ADI) method using GPU CUDA\",\"authors\":\"Mutaqin Akbar, Pranowo, Suyoto Magister\",\"doi\":\"10.1109/ICCEREC.2017.8226691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a computational acceleration of image inpainting using parallel processing based on Graphics Processing Unit (GPU) Compute Unified Device Architecture (CUDA). We use parabolic partial differential equation (PDE) called heat equation as the model equation. The heat equation is discretized numerically using Finite Difference method. Semi-algebraic equation that formed then solved by using Alternating-Direction Implicit (ADI) scheme. The numerical algorithm is implemented in GPU CUDA parallel computing to speed up the computational time. The computational process of the inpainting can be done using larger time-step. The computational time can be accelerated to 5.86 times faster using an image with 2736×1824 resolution.\",\"PeriodicalId\":328054,\"journal\":{\"name\":\"2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEREC.2017.8226691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEREC.2017.8226691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于图形处理单元(GPU)计算统一设备架构(CUDA)的并行处理图像绘制的计算加速方法。我们使用抛物型偏微分方程(PDE)作为模型方程。采用有限差分法对热方程进行数值离散。采用交替方向隐式(ADI)格式对所形成的半代数方程进行求解。数值算法在GPU CUDA并行计算中实现,提高了计算速度。可以采用较大的时间步长来完成补漆的计算过程。使用2736×1824分辨率的图像,计算时间可以加快到5.86倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational acceleration of image inpainting Alternating-Direction Implicit (ADI) method using GPU CUDA
This paper presents a computational acceleration of image inpainting using parallel processing based on Graphics Processing Unit (GPU) Compute Unified Device Architecture (CUDA). We use parabolic partial differential equation (PDE) called heat equation as the model equation. The heat equation is discretized numerically using Finite Difference method. Semi-algebraic equation that formed then solved by using Alternating-Direction Implicit (ADI) scheme. The numerical algorithm is implemented in GPU CUDA parallel computing to speed up the computational time. The computational process of the inpainting can be done using larger time-step. The computational time can be accelerated to 5.86 times faster using an image with 2736×1824 resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信