论同时有理函数重构的唯一性

Eleonora Guerrini, R. Lebreton, Ilaria Zappatore
{"title":"论同时有理函数重构的唯一性","authors":"Eleonora Guerrini, R. Lebreton, Ilaria Zappatore","doi":"10.1145/3373207.3404051","DOIUrl":null,"url":null,"abstract":"This paper focuses on the problem of reconstructing a vector of rational functions given some evaluations, or more generally given their remainders modulo different polynomials. The special case of rational functions sharing the same denominator, a.k.a. Simultaneous Rational Function Reconstruction (SRFR), has many applications from linear system solving to coding theory, provided that SRFR has a unique solution. The number of unknowns in SRFR is smaller than for a general vector of rational function. This allows one to reduce the number of evaluation points needed to guarantee the existence of a solution, possibly losing its uniqueness. In this work, we prove that uniqueness is guaranteed for a generic instance.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the uniqueness of simultaneous rational function reconstruction\",\"authors\":\"Eleonora Guerrini, R. Lebreton, Ilaria Zappatore\",\"doi\":\"10.1145/3373207.3404051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the problem of reconstructing a vector of rational functions given some evaluations, or more generally given their remainders modulo different polynomials. The special case of rational functions sharing the same denominator, a.k.a. Simultaneous Rational Function Reconstruction (SRFR), has many applications from linear system solving to coding theory, provided that SRFR has a unique solution. The number of unknowns in SRFR is smaller than for a general vector of rational function. This allows one to reduce the number of evaluation points needed to guarantee the existence of a solution, possibly losing its uniqueness. In this work, we prove that uniqueness is guaranteed for a generic instance.\",\"PeriodicalId\":186699,\"journal\":{\"name\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3373207.3404051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文主要研究在给定有理函数的某些值,或者更一般地说,给定它们的余数对不同多项式的模的情况下重构有理函数向量的问题。具有相同分母的有理函数的特殊情况,即同时有理函数重构(SRFR),具有从线性系统求解到编码理论的许多应用,只要SRFR具有唯一解。SRFR中的未知量小于一般有理函数向量。这允许减少保证解决方案存在所需的评估点的数量,可能会失去其唯一性。在这项工作中,我们证明了一个泛型实例的唯一性是保证的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the uniqueness of simultaneous rational function reconstruction
This paper focuses on the problem of reconstructing a vector of rational functions given some evaluations, or more generally given their remainders modulo different polynomials. The special case of rational functions sharing the same denominator, a.k.a. Simultaneous Rational Function Reconstruction (SRFR), has many applications from linear system solving to coding theory, provided that SRFR has a unique solution. The number of unknowns in SRFR is smaller than for a general vector of rational function. This allows one to reduce the number of evaluation points needed to guarantee the existence of a solution, possibly losing its uniqueness. In this work, we prove that uniqueness is guaranteed for a generic instance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信