数据挖掘应用于使用FP-TREE和TID-LIST组合创建销售推广包

S. P. Tamba, Albert William Tan, Yudi Gunawan, Andreas Andreas
{"title":"数据挖掘应用于使用FP-TREE和TID-LIST组合创建销售推广包","authors":"S. P. Tamba, Albert William Tan, Yudi Gunawan, Andreas Andreas","doi":"10.37600/tekinkom.v4i2.309","DOIUrl":null,"url":null,"abstract":"The manual preparation strategy of a promosi package can encounter difficulties in determining the right product to be promosited caused of no sales data analysis and the large size of sales database.The solution to this problem is to apply data mining science to find buying patterns that consumers often make in a collection of sales transactions, so that company can create the right promosi packages to encourage increased sales turnover. The study scanned the sales database obtained from the UCI maching learning repository and intelligent system dataset with 12,224 sales transaction records and 126,898 record of goods sold. Furthermore, the data mining process carries out the process of constructing an FP-Tree tree structure, constructing a conditional FP-Tree and TID List, then extracting a combination of items and calculating support (S), confidence (C) and sorting association rules based on the value of S x C descending, from the highest to the lowest value. The combination of FP-Tree and TID-List algorithms can be used to help formulate promosi package strategies, by analyzing the sales database and finding the most frequently sold combinations of items.","PeriodicalId":365934,"journal":{"name":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","volume":"294 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"PENERAPAN DATA MINING UNTUK PEMBUATAN PAKET PROMOSI PENJUALAN MENGGUNAKAN KOMBINASI FP-TREE DAN TID-LIST\",\"authors\":\"S. P. Tamba, Albert William Tan, Yudi Gunawan, Andreas Andreas\",\"doi\":\"10.37600/tekinkom.v4i2.309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The manual preparation strategy of a promosi package can encounter difficulties in determining the right product to be promosited caused of no sales data analysis and the large size of sales database.The solution to this problem is to apply data mining science to find buying patterns that consumers often make in a collection of sales transactions, so that company can create the right promosi packages to encourage increased sales turnover. The study scanned the sales database obtained from the UCI maching learning repository and intelligent system dataset with 12,224 sales transaction records and 126,898 record of goods sold. Furthermore, the data mining process carries out the process of constructing an FP-Tree tree structure, constructing a conditional FP-Tree and TID List, then extracting a combination of items and calculating support (S), confidence (C) and sorting association rules based on the value of S x C descending, from the highest to the lowest value. The combination of FP-Tree and TID-List algorithms can be used to help formulate promosi package strategies, by analyzing the sales database and finding the most frequently sold combinations of items.\",\"PeriodicalId\":365934,\"journal\":{\"name\":\"Jurnal Teknik Informasi dan Komputer (Tekinkom)\",\"volume\":\"294 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknik Informasi dan Komputer (Tekinkom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37600/tekinkom.v4i2.309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37600/tekinkom.v4i2.309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于没有销售数据分析和庞大的销售数据库,促销包的手工准备策略在确定促销产品时可能会遇到困难。这个问题的解决方案是应用数据挖掘科学来发现消费者在一系列销售交易中经常做出的购买模式,这样公司就可以创建正确的促销包来鼓励增加销售营业额。该研究扫描了从UCI机器学习库和智能系统数据集获得的销售数据库,其中包含12,224个销售交易记录和126,898个销售商品记录。进一步,数据挖掘过程进行构造FP-Tree树状结构,构造条件FP-Tree和TID List,提取项目组合,计算支持度(S)、置信度(C),并根据S × C的值由高到低降序排序关联规则的过程。FP-Tree和TID-List算法的结合可以通过分析销售数据库并找到最常销售的商品组合来帮助制定促销包装策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENERAPAN DATA MINING UNTUK PEMBUATAN PAKET PROMOSI PENJUALAN MENGGUNAKAN KOMBINASI FP-TREE DAN TID-LIST
The manual preparation strategy of a promosi package can encounter difficulties in determining the right product to be promosited caused of no sales data analysis and the large size of sales database.The solution to this problem is to apply data mining science to find buying patterns that consumers often make in a collection of sales transactions, so that company can create the right promosi packages to encourage increased sales turnover. The study scanned the sales database obtained from the UCI maching learning repository and intelligent system dataset with 12,224 sales transaction records and 126,898 record of goods sold. Furthermore, the data mining process carries out the process of constructing an FP-Tree tree structure, constructing a conditional FP-Tree and TID List, then extracting a combination of items and calculating support (S), confidence (C) and sorting association rules based on the value of S x C descending, from the highest to the lowest value. The combination of FP-Tree and TID-List algorithms can be used to help formulate promosi package strategies, by analyzing the sales database and finding the most frequently sold combinations of items.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信