一类参数不确定的混沌时滞神经网络的自适应同步

Dong Zhang
{"title":"一类参数不确定的混沌时滞神经网络的自适应同步","authors":"Dong Zhang","doi":"10.1109/ICIME.2010.5477843","DOIUrl":null,"url":null,"abstract":"In this letter, the problem of adaptive synchronization of a class of chaotic time-delayed neural networks with uncertain parameters is studied. Based on Lyapunov stability theory and the adaptive control theory, two different kinds of adaptive controllers are presented for different unknown parameters. Numerical simulations demonstrate the analytical results and show the efficiency of the both approaches.","PeriodicalId":382705,"journal":{"name":"2010 2nd IEEE International Conference on Information Management and Engineering","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive synchronization of a class of chaotic time-delayed neural networks with uncertain parameters\",\"authors\":\"Dong Zhang\",\"doi\":\"10.1109/ICIME.2010.5477843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, the problem of adaptive synchronization of a class of chaotic time-delayed neural networks with uncertain parameters is studied. Based on Lyapunov stability theory and the adaptive control theory, two different kinds of adaptive controllers are presented for different unknown parameters. Numerical simulations demonstrate the analytical results and show the efficiency of the both approaches.\",\"PeriodicalId\":382705,\"journal\":{\"name\":\"2010 2nd IEEE International Conference on Information Management and Engineering\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd IEEE International Conference on Information Management and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIME.2010.5477843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd IEEE International Conference on Information Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIME.2010.5477843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类参数不确定的混沌时滞神经网络的自适应同步问题。基于李雅普诺夫稳定性理论和自适应控制理论,针对不同的未知参数,提出了两种不同的自适应控制器。数值模拟验证了分析结果,并证明了两种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive synchronization of a class of chaotic time-delayed neural networks with uncertain parameters
In this letter, the problem of adaptive synchronization of a class of chaotic time-delayed neural networks with uncertain parameters is studied. Based on Lyapunov stability theory and the adaptive control theory, two different kinds of adaptive controllers are presented for different unknown parameters. Numerical simulations demonstrate the analytical results and show the efficiency of the both approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信