基于核典型相关分析的多模态情感识别

Bo Li, L. Qi, Lei Gao
{"title":"基于核典型相关分析的多模态情感识别","authors":"Bo Li, L. Qi, Lei Gao","doi":"10.1109/IWECA.2014.6845774","DOIUrl":null,"url":null,"abstract":"In order to deal with the limitation of the unmoral biometric systems, a multimodality emotion recognition system is proposed based on kernel canonical correlation analysis (KCCA). Because audio signal and facial expressions are two main channels of emotional communication, this approach extracts prosodic features and the visual features in FrFT domain. Those features are fused for the emotion recognition. The experimental results show that the multimodal recognition outperforms the unmoral biometric recognition.","PeriodicalId":383024,"journal":{"name":"2014 IEEE Workshop on Electronics, Computer and Applications","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multimodal emotion recognition based on kernel canonical correlation analysis\",\"authors\":\"Bo Li, L. Qi, Lei Gao\",\"doi\":\"10.1109/IWECA.2014.6845774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to deal with the limitation of the unmoral biometric systems, a multimodality emotion recognition system is proposed based on kernel canonical correlation analysis (KCCA). Because audio signal and facial expressions are two main channels of emotional communication, this approach extracts prosodic features and the visual features in FrFT domain. Those features are fused for the emotion recognition. The experimental results show that the multimodal recognition outperforms the unmoral biometric recognition.\",\"PeriodicalId\":383024,\"journal\":{\"name\":\"2014 IEEE Workshop on Electronics, Computer and Applications\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Workshop on Electronics, Computer and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWECA.2014.6845774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Workshop on Electronics, Computer and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWECA.2014.6845774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对非道德生物识别系统的局限性,提出了一种基于核典型相关分析(KCCA)的多模态情感识别系统。由于音频信号和面部表情是情感交流的两个主要渠道,该方法在FrFT域中提取韵律特征和视觉特征。将这些特征融合在一起进行情感识别。实验结果表明,多模态识别优于非道德生物特征识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal emotion recognition based on kernel canonical correlation analysis
In order to deal with the limitation of the unmoral biometric systems, a multimodality emotion recognition system is proposed based on kernel canonical correlation analysis (KCCA). Because audio signal and facial expressions are two main channels of emotional communication, this approach extracts prosodic features and the visual features in FrFT domain. Those features are fused for the emotion recognition. The experimental results show that the multimodal recognition outperforms the unmoral biometric recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信