基于规则的模糊日太阳辐射预测模型

R. Iqdour, A. Zéroual
{"title":"基于规则的模糊日太阳辐射预测模型","authors":"R. Iqdour, A. Zéroual","doi":"10.1109/ICIT.2004.1490783","DOIUrl":null,"url":null,"abstract":"The main goal of this investigation is to use the fuzzy systems of Takagi Sugeno for the modelling of the solar radiation data. Generally, the process of identifying a fuzzy inference system (or fuzzy model) requires two types of tuning designated as structural and parametric tunings. The first one concerns the structure of the rules and deals with problems such as the partition of the universe of discourse, the number of fuzzy if-then rules and the number of membership functions for each input. The second one is the identification of the parameters of the system. In this work we used the fuzzy clustering techniques to determine the adequate structure, and the weighted least square (WLS) algorithm to estimate the linear parameters. To verify the effectiveness of the proposed fuzzy modelling method, the identified TS fuzzy model is applied to predict the global solar radiation data. The numerical results are then compared with the results of a model using the SOS techniques. It is shown that the fuzzy modelling approach is not only more accurate than the SOS techniques but also provides some qualitative information.","PeriodicalId":136064,"journal":{"name":"2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04.","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A rule based fuzzy model for the prediction of daily solar radiation\",\"authors\":\"R. Iqdour, A. Zéroual\",\"doi\":\"10.1109/ICIT.2004.1490783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this investigation is to use the fuzzy systems of Takagi Sugeno for the modelling of the solar radiation data. Generally, the process of identifying a fuzzy inference system (or fuzzy model) requires two types of tuning designated as structural and parametric tunings. The first one concerns the structure of the rules and deals with problems such as the partition of the universe of discourse, the number of fuzzy if-then rules and the number of membership functions for each input. The second one is the identification of the parameters of the system. In this work we used the fuzzy clustering techniques to determine the adequate structure, and the weighted least square (WLS) algorithm to estimate the linear parameters. To verify the effectiveness of the proposed fuzzy modelling method, the identified TS fuzzy model is applied to predict the global solar radiation data. The numerical results are then compared with the results of a model using the SOS techniques. It is shown that the fuzzy modelling approach is not only more accurate than the SOS techniques but also provides some qualitative information.\",\"PeriodicalId\":136064,\"journal\":{\"name\":\"2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04.\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2004.1490783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2004.1490783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本研究的主要目的是利用高木Sugeno的模糊系统对太阳辐射数据进行建模。一般来说,识别模糊推理系统(或模糊模型)的过程需要两种类型的调谐,即结构调谐和参数调谐。第一个模型关注规则的结构,并处理诸如话语域的划分、模糊if-then规则的数量和每个输入的隶属函数的数量等问题。二是系统参数的辨识。在这项工作中,我们使用模糊聚类技术来确定适当的结构,加权最小二乘法(WLS)算法来估计线性参数。为了验证所提出的模糊建模方法的有效性,将识别的TS模糊模型应用于全球太阳辐射数据的预测。然后将数值结果与使用SOS技术的模型结果进行了比较。结果表明,模糊建模方法不仅比SOS技术更准确,而且还提供了一些定性信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rule based fuzzy model for the prediction of daily solar radiation
The main goal of this investigation is to use the fuzzy systems of Takagi Sugeno for the modelling of the solar radiation data. Generally, the process of identifying a fuzzy inference system (or fuzzy model) requires two types of tuning designated as structural and parametric tunings. The first one concerns the structure of the rules and deals with problems such as the partition of the universe of discourse, the number of fuzzy if-then rules and the number of membership functions for each input. The second one is the identification of the parameters of the system. In this work we used the fuzzy clustering techniques to determine the adequate structure, and the weighted least square (WLS) algorithm to estimate the linear parameters. To verify the effectiveness of the proposed fuzzy modelling method, the identified TS fuzzy model is applied to predict the global solar radiation data. The numerical results are then compared with the results of a model using the SOS techniques. It is shown that the fuzzy modelling approach is not only more accurate than the SOS techniques but also provides some qualitative information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信