近期量子计算机上量子-经典混合启发式变分参数优化

T. Miki, D. Tsukayama, R. Okita, M. Shimada, J. Shirakashi
{"title":"近期量子计算机上量子-经典混合启发式变分参数优化","authors":"T. Miki, D. Tsukayama, R. Okita, M. Shimada, J. Shirakashi","doi":"10.1109/3M-NANO56083.2022.9941666","DOIUrl":null,"url":null,"abstract":"Currently available quantum processors are noisy intermediate-scale quantum (NISQ) devices. The variational quantum eigensolver (VQE) is an algorithm that is closer to near-term applicability due to lower quantum hardware requirements. In VQE, trial states with variational parameters are prepared by quantum computers, and the optimal parameters are determined by a classical optimizer. This optimization is known to be an NP-hard problem. In this work, we make a comparison between various gradient-free optimizers in terms of approximation ratio and function evaluations. As a result, we find that COBYLA method is the best to find the approximated solution with a lower number of executions of quantum computers.","PeriodicalId":370631,"journal":{"name":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational Parameter Optimization of Quantum-classical Hybrid Heuristics on Near-term Quantum Computer\",\"authors\":\"T. Miki, D. Tsukayama, R. Okita, M. Shimada, J. Shirakashi\",\"doi\":\"10.1109/3M-NANO56083.2022.9941666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently available quantum processors are noisy intermediate-scale quantum (NISQ) devices. The variational quantum eigensolver (VQE) is an algorithm that is closer to near-term applicability due to lower quantum hardware requirements. In VQE, trial states with variational parameters are prepared by quantum computers, and the optimal parameters are determined by a classical optimizer. This optimization is known to be an NP-hard problem. In this work, we make a comparison between various gradient-free optimizers in terms of approximation ratio and function evaluations. As a result, we find that COBYLA method is the best to find the approximated solution with a lower number of executions of quantum computers.\",\"PeriodicalId\":370631,\"journal\":{\"name\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO56083.2022.9941666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO56083.2022.9941666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前可用的量子处理器是有噪声的中尺度量子(NISQ)器件。变分量子特征求解器(VQE)是一种更接近近期适用性的算法,因为它对量子硬件的要求较低。在VQE中,由量子计算机制备具有变分参数的试态,并通过经典优化器确定最优参数。这种优化是一个np困难问题。在这项工作中,我们对各种无梯度优化器在近似比率和函数评估方面进行了比较。结果表明,COBYLA方法能够以较少的量子计算机执行次数找到近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Parameter Optimization of Quantum-classical Hybrid Heuristics on Near-term Quantum Computer
Currently available quantum processors are noisy intermediate-scale quantum (NISQ) devices. The variational quantum eigensolver (VQE) is an algorithm that is closer to near-term applicability due to lower quantum hardware requirements. In VQE, trial states with variational parameters are prepared by quantum computers, and the optimal parameters are determined by a classical optimizer. This optimization is known to be an NP-hard problem. In this work, we make a comparison between various gradient-free optimizers in terms of approximation ratio and function evaluations. As a result, we find that COBYLA method is the best to find the approximated solution with a lower number of executions of quantum computers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信