调度问题遗传算子的新概念

A. Ferrolho, M. Crisostomo
{"title":"调度问题遗传算子的新概念","authors":"A. Ferrolho, M. Crisostomo","doi":"10.1109/ICCCYB.2006.305688","DOIUrl":null,"url":null,"abstract":"When a genetic algorithm (GA) is applied to scheduling problems, various crossovers and mutations can be applicable. We have to carefully select appropriate operators for constructing high performance GA, because GA performance depends on the choice of such operators as well as crossover and mutation probabilities. First, we present a new concept of genetic operators for scheduling problems. Then, we developed a software tool, called HybFlexGA, to examine the performance of various crossover and mutation operators by computing simulations of job scheduling problems. Finally, we applied in the HybFlexGA the best genetic operators obtained from our computational tests.","PeriodicalId":160588,"journal":{"name":"2006 IEEE International Conference on Computational Cybernetics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Concept of Genetic Operators for Scheduling Problems\",\"authors\":\"A. Ferrolho, M. Crisostomo\",\"doi\":\"10.1109/ICCCYB.2006.305688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a genetic algorithm (GA) is applied to scheduling problems, various crossovers and mutations can be applicable. We have to carefully select appropriate operators for constructing high performance GA, because GA performance depends on the choice of such operators as well as crossover and mutation probabilities. First, we present a new concept of genetic operators for scheduling problems. Then, we developed a software tool, called HybFlexGA, to examine the performance of various crossover and mutation operators by computing simulations of job scheduling problems. Finally, we applied in the HybFlexGA the best genetic operators obtained from our computational tests.\",\"PeriodicalId\":160588,\"journal\":{\"name\":\"2006 IEEE International Conference on Computational Cybernetics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Computational Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCYB.2006.305688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Computational Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCYB.2006.305688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将遗传算法应用于调度问题时,会产生各种各样的交叉和突变。我们必须仔细选择合适的算子来构建高性能的遗传算法,因为遗传算法的性能取决于这些算子的选择以及交叉和突变概率。首先,我们提出了调度问题的遗传算子的新概念。然后,我们开发了一个名为HybFlexGA的软件工具,通过计算作业调度问题的模拟来检查各种交叉和突变算子的性能。最后,我们在HybFlexGA中应用了从计算测试中得到的最佳遗传算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Concept of Genetic Operators for Scheduling Problems
When a genetic algorithm (GA) is applied to scheduling problems, various crossovers and mutations can be applicable. We have to carefully select appropriate operators for constructing high performance GA, because GA performance depends on the choice of such operators as well as crossover and mutation probabilities. First, we present a new concept of genetic operators for scheduling problems. Then, we developed a software tool, called HybFlexGA, to examine the performance of various crossover and mutation operators by computing simulations of job scheduling problems. Finally, we applied in the HybFlexGA the best genetic operators obtained from our computational tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信