一种改进的旋转mems捷联惯导系统自适应鲁棒初始对准方法

Jianguo Liu, Xiyuan Chen, Junwei Wang
{"title":"一种改进的旋转mems捷联惯导系统自适应鲁棒初始对准方法","authors":"Jianguo Liu, Xiyuan Chen, Junwei Wang","doi":"10.1109/ICCAIS56082.2022.9990295","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptively robust unscented Kalman filter (ARUKF) for the rotation micro-electro-mechanical system based strapdown inertial navigation system (MINS) to achieve fast in-motion initial alignment in the presence of large misalignment angles. First, UKF is utilized to address nonlinearity issues resulting from large misalignment angles. Second, the strong tracking strategy is implemented to robustly compensate for dynamic model errors during the transition phase. The variational Bayesian is then applied in the steady state to adaptively estimate the time-varying measurement noises. The proposed method speeds up convergence during the transition phase and improves convergence precision during the steady phase. In conclusion, the turntable experiments verify the validity of the proposed method.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Adaptive and Robust Initial Alignment Method for Rotation MEMS-based SINS\",\"authors\":\"Jianguo Liu, Xiyuan Chen, Junwei Wang\",\"doi\":\"10.1109/ICCAIS56082.2022.9990295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an adaptively robust unscented Kalman filter (ARUKF) for the rotation micro-electro-mechanical system based strapdown inertial navigation system (MINS) to achieve fast in-motion initial alignment in the presence of large misalignment angles. First, UKF is utilized to address nonlinearity issues resulting from large misalignment angles. Second, the strong tracking strategy is implemented to robustly compensate for dynamic model errors during the transition phase. The variational Bayesian is then applied in the steady state to adaptively estimate the time-varying measurement noises. The proposed method speeds up convergence during the transition phase and improves convergence precision during the steady phase. In conclusion, the turntable experiments verify the validity of the proposed method.\",\"PeriodicalId\":273404,\"journal\":{\"name\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"229 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS56082.2022.9990295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对旋转微机电系统捷联惯导系统,提出了一种自适应鲁棒无气味卡尔曼滤波(ARUKF),以实现在运动中存在较大误差角时的快速初始对准。首先,利用UKF来解决由于大的不对准角度导致的非线性问题。其次,采用强跟踪策略对过渡阶段的动态模型误差进行鲁棒补偿。然后在稳态状态下应用变分贝叶斯自适应估计时变测量噪声。该方法加快了过渡阶段的收敛速度,提高了稳定阶段的收敛精度。最后,转台实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Adaptive and Robust Initial Alignment Method for Rotation MEMS-based SINS
This paper proposes an adaptively robust unscented Kalman filter (ARUKF) for the rotation micro-electro-mechanical system based strapdown inertial navigation system (MINS) to achieve fast in-motion initial alignment in the presence of large misalignment angles. First, UKF is utilized to address nonlinearity issues resulting from large misalignment angles. Second, the strong tracking strategy is implemented to robustly compensate for dynamic model errors during the transition phase. The variational Bayesian is then applied in the steady state to adaptively estimate the time-varying measurement noises. The proposed method speeds up convergence during the transition phase and improves convergence precision during the steady phase. In conclusion, the turntable experiments verify the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信