增强视频对象分割的边界

Qi Zhang, Xiaoqiang Lu, Yuan Yuan
{"title":"增强视频对象分割的边界","authors":"Qi Zhang, Xiaoqiang Lu, Yuan Yuan","doi":"10.1145/3271553.3271581","DOIUrl":null,"url":null,"abstract":"Video object segmentation aims to separate objects from background in successive video sequence accurately. It is a challenging task as the huge variance in object regions and similarity between object and background. Among previous methods, inner region of an object can be easily separated from background while the region around object boundary is often classified improperly. To address this problem, a novel video object segmentation method is proposed to enhance the object boundary by integrating video supervoxel into Convolutional Neural Network (CNN) model. Supervoxel is exploited in our method for its ability of preserving spatial details. The proposed method can be divided into four steps: 1) convolutional feature of video is extracted with CNN model; 2) supervoxel feature is constructed through averaging the convolutional features within each supervoxel to preserve spatial details of video; 3) the supervoxel feature and original convolutional feature are fused to construct video representation; 4) a softmax classifier is trained based on video representation to classify each pixel in video. The proposed method is evaluated both on DAVIS and Youtube-Objects datasets. Experimental results show that by considering supervoxel with spatial details, the proposed method can achieve impressive performance for video object segmentation through enhancing object boundary.","PeriodicalId":414782,"journal":{"name":"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Boundary for Video Object Segmentation\",\"authors\":\"Qi Zhang, Xiaoqiang Lu, Yuan Yuan\",\"doi\":\"10.1145/3271553.3271581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video object segmentation aims to separate objects from background in successive video sequence accurately. It is a challenging task as the huge variance in object regions and similarity between object and background. Among previous methods, inner region of an object can be easily separated from background while the region around object boundary is often classified improperly. To address this problem, a novel video object segmentation method is proposed to enhance the object boundary by integrating video supervoxel into Convolutional Neural Network (CNN) model. Supervoxel is exploited in our method for its ability of preserving spatial details. The proposed method can be divided into four steps: 1) convolutional feature of video is extracted with CNN model; 2) supervoxel feature is constructed through averaging the convolutional features within each supervoxel to preserve spatial details of video; 3) the supervoxel feature and original convolutional feature are fused to construct video representation; 4) a softmax classifier is trained based on video representation to classify each pixel in video. The proposed method is evaluated both on DAVIS and Youtube-Objects datasets. Experimental results show that by considering supervoxel with spatial details, the proposed method can achieve impressive performance for video object segmentation through enhancing object boundary.\",\"PeriodicalId\":414782,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3271553.3271581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3271553.3271581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视频目标分割的目的是将连续视频序列中的目标与背景准确分离。由于目标区域的巨大差异和目标与背景的相似性,这是一项具有挑战性的任务。在以往的方法中,目标的内部区域很容易与背景分离,而目标边界附近的区域往往分类不正确。为了解决这一问题,提出了一种新的视频目标分割方法,通过将视频超体素与卷积神经网络(CNN)模型相结合来增强目标边界。我们的方法利用了超体素,因为它具有保留空间细节的能力。该方法分为四个步骤:1)利用CNN模型提取视频的卷积特征;2)对每个超体素内的卷积特征进行平均,构建超体素特征,以保持视频的空间细节;3)融合超体素特征和原始卷积特征构建视频表示;4)基于视频表示训练softmax分类器,对视频中的每个像素进行分类。在DAVIS和Youtube-Objects数据集上对该方法进行了评估。实验结果表明,该方法考虑了具有空间细节的超体素,通过增强目标边界,可以取得较好的分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Boundary for Video Object Segmentation
Video object segmentation aims to separate objects from background in successive video sequence accurately. It is a challenging task as the huge variance in object regions and similarity between object and background. Among previous methods, inner region of an object can be easily separated from background while the region around object boundary is often classified improperly. To address this problem, a novel video object segmentation method is proposed to enhance the object boundary by integrating video supervoxel into Convolutional Neural Network (CNN) model. Supervoxel is exploited in our method for its ability of preserving spatial details. The proposed method can be divided into four steps: 1) convolutional feature of video is extracted with CNN model; 2) supervoxel feature is constructed through averaging the convolutional features within each supervoxel to preserve spatial details of video; 3) the supervoxel feature and original convolutional feature are fused to construct video representation; 4) a softmax classifier is trained based on video representation to classify each pixel in video. The proposed method is evaluated both on DAVIS and Youtube-Objects datasets. Experimental results show that by considering supervoxel with spatial details, the proposed method can achieve impressive performance for video object segmentation through enhancing object boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信