{"title":"交替测试环境下特征选择的混合方法","authors":"G. Léger, M. Barragán","doi":"10.1109/SMACD.2015.7301707","DOIUrl":null,"url":null,"abstract":"Machine-learning test strategy has been developed in the last decade as an alternative to costly specification-driven tests for Analog, Mixed-Signal and RF circuits (AMS-RF). The concept is simple: powerful algorithms are used to map simple measurements onto specifications. But the proper execution requires an information-rich input space. This paper presents an efficient hybrid algorithm to select the best subset of signatures (or features) among a large number of candidates and shows how it can be applied to eventually propose the development of new ones.","PeriodicalId":207878,"journal":{"name":"2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hybrid method for feature selection in the context of alternate test\",\"authors\":\"G. Léger, M. Barragán\",\"doi\":\"10.1109/SMACD.2015.7301707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine-learning test strategy has been developed in the last decade as an alternative to costly specification-driven tests for Analog, Mixed-Signal and RF circuits (AMS-RF). The concept is simple: powerful algorithms are used to map simple measurements onto specifications. But the proper execution requires an information-rich input space. This paper presents an efficient hybrid algorithm to select the best subset of signatures (or features) among a large number of candidates and shows how it can be applied to eventually propose the development of new ones.\",\"PeriodicalId\":207878,\"journal\":{\"name\":\"2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMACD.2015.7301707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD.2015.7301707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hybrid method for feature selection in the context of alternate test
Machine-learning test strategy has been developed in the last decade as an alternative to costly specification-driven tests for Analog, Mixed-Signal and RF circuits (AMS-RF). The concept is simple: powerful algorithms are used to map simple measurements onto specifications. But the proper execution requires an information-rich input space. This paper presents an efficient hybrid algorithm to select the best subset of signatures (or features) among a large number of candidates and shows how it can be applied to eventually propose the development of new ones.