交替测试环境下特征选择的混合方法

G. Léger, M. Barragán
{"title":"交替测试环境下特征选择的混合方法","authors":"G. Léger, M. Barragán","doi":"10.1109/SMACD.2015.7301707","DOIUrl":null,"url":null,"abstract":"Machine-learning test strategy has been developed in the last decade as an alternative to costly specification-driven tests for Analog, Mixed-Signal and RF circuits (AMS-RF). The concept is simple: powerful algorithms are used to map simple measurements onto specifications. But the proper execution requires an information-rich input space. This paper presents an efficient hybrid algorithm to select the best subset of signatures (or features) among a large number of candidates and shows how it can be applied to eventually propose the development of new ones.","PeriodicalId":207878,"journal":{"name":"2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hybrid method for feature selection in the context of alternate test\",\"authors\":\"G. Léger, M. Barragán\",\"doi\":\"10.1109/SMACD.2015.7301707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine-learning test strategy has been developed in the last decade as an alternative to costly specification-driven tests for Analog, Mixed-Signal and RF circuits (AMS-RF). The concept is simple: powerful algorithms are used to map simple measurements onto specifications. But the proper execution requires an information-rich input space. This paper presents an efficient hybrid algorithm to select the best subset of signatures (or features) among a large number of candidates and shows how it can be applied to eventually propose the development of new ones.\",\"PeriodicalId\":207878,\"journal\":{\"name\":\"2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMACD.2015.7301707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD.2015.7301707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习测试策略在过去十年中发展起来,作为模拟、混合信号和射频电路(AMS-RF)昂贵的规范驱动测试的替代方案。概念很简单:使用强大的算法将简单的测量映射到规格上。但是正确的执行需要一个信息丰富的输入空间。本文提出了一种高效的混合算法,用于从大量候选签名(或特征)中选择最佳子集,并展示了如何将其应用于最终提出新签名的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid method for feature selection in the context of alternate test
Machine-learning test strategy has been developed in the last decade as an alternative to costly specification-driven tests for Analog, Mixed-Signal and RF circuits (AMS-RF). The concept is simple: powerful algorithms are used to map simple measurements onto specifications. But the proper execution requires an information-rich input space. This paper presents an efficient hybrid algorithm to select the best subset of signatures (or features) among a large number of candidates and shows how it can be applied to eventually propose the development of new ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信