模型预测控制中基于梯度优化的执行时间验证

Pontus Giselsson
{"title":"模型预测控制中基于梯度优化的执行时间验证","authors":"Pontus Giselsson","doi":"10.1109/CDC.2012.6427093","DOIUrl":null,"url":null,"abstract":"We consider model predictive control (MPC) problems with linear dynamics, polytopic constraints and quadratic objective. The resulting optimization problem is solved by applying an accelerated gradient method to the dual problem. The focus of this paper is to provide bounds on the number of iterations needed in the algorithm to guarantee a prespecified accuracy of the dual function value and the primal variables as well as guaranteeing a prespecified maximal constraint violation. The provided numerical example shows that the iteration bounds are tight enough to be useful in an inverted pendulum application.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Execution time certification for gradient-based optimization in model predictive control\",\"authors\":\"Pontus Giselsson\",\"doi\":\"10.1109/CDC.2012.6427093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider model predictive control (MPC) problems with linear dynamics, polytopic constraints and quadratic objective. The resulting optimization problem is solved by applying an accelerated gradient method to the dual problem. The focus of this paper is to provide bounds on the number of iterations needed in the algorithm to guarantee a prespecified accuracy of the dual function value and the primal variables as well as guaranteeing a prespecified maximal constraint violation. The provided numerical example shows that the iteration bounds are tight enough to be useful in an inverted pendulum application.\",\"PeriodicalId\":312426,\"journal\":{\"name\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2012.6427093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6427093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

研究了具有线性动力学、多面约束和二次目标的模型预测控制问题。将加速梯度法应用于对偶问题,求解了优化问题。本文的重点是提供算法所需的迭代次数的界限,以保证对偶函数值和原始变量的预定精度,并保证预定的最大约束违反。所提供的数值实例表明,迭代边界足够严密,可用于倒立摆应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Execution time certification for gradient-based optimization in model predictive control
We consider model predictive control (MPC) problems with linear dynamics, polytopic constraints and quadratic objective. The resulting optimization problem is solved by applying an accelerated gradient method to the dual problem. The focus of this paper is to provide bounds on the number of iterations needed in the algorithm to guarantee a prespecified accuracy of the dual function value and the primal variables as well as guaranteeing a prespecified maximal constraint violation. The provided numerical example shows that the iteration bounds are tight enough to be useful in an inverted pendulum application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信