{"title":"模型预测控制中基于梯度优化的执行时间验证","authors":"Pontus Giselsson","doi":"10.1109/CDC.2012.6427093","DOIUrl":null,"url":null,"abstract":"We consider model predictive control (MPC) problems with linear dynamics, polytopic constraints and quadratic objective. The resulting optimization problem is solved by applying an accelerated gradient method to the dual problem. The focus of this paper is to provide bounds on the number of iterations needed in the algorithm to guarantee a prespecified accuracy of the dual function value and the primal variables as well as guaranteeing a prespecified maximal constraint violation. The provided numerical example shows that the iteration bounds are tight enough to be useful in an inverted pendulum application.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Execution time certification for gradient-based optimization in model predictive control\",\"authors\":\"Pontus Giselsson\",\"doi\":\"10.1109/CDC.2012.6427093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider model predictive control (MPC) problems with linear dynamics, polytopic constraints and quadratic objective. The resulting optimization problem is solved by applying an accelerated gradient method to the dual problem. The focus of this paper is to provide bounds on the number of iterations needed in the algorithm to guarantee a prespecified accuracy of the dual function value and the primal variables as well as guaranteeing a prespecified maximal constraint violation. The provided numerical example shows that the iteration bounds are tight enough to be useful in an inverted pendulum application.\",\"PeriodicalId\":312426,\"journal\":{\"name\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2012.6427093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6427093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Execution time certification for gradient-based optimization in model predictive control
We consider model predictive control (MPC) problems with linear dynamics, polytopic constraints and quadratic objective. The resulting optimization problem is solved by applying an accelerated gradient method to the dual problem. The focus of this paper is to provide bounds on the number of iterations needed in the algorithm to guarantee a prespecified accuracy of the dual function value and the primal variables as well as guaranteeing a prespecified maximal constraint violation. The provided numerical example shows that the iteration bounds are tight enough to be useful in an inverted pendulum application.