基于k均值的双向抽样失衡文本分类方法

Jiapeng Song, Xianglin Huang, Sijun Qin, Qing Song
{"title":"基于k均值的双向抽样失衡文本分类方法","authors":"Jiapeng Song, Xianglin Huang, Sijun Qin, Qing Song","doi":"10.1109/ICIS.2016.7550920","DOIUrl":null,"url":null,"abstract":"This paper studies the imbalanced data classify-cation problem and proposes bi-directional sampling based on clustering (BDSK) for the imbalanced data classification. This algorithm combines SMOTE over-sampling algorithm and under-sampling algorithm based on K-Means to solve the within-class imbalance problem and the between-class imbalance problem. It not only avoid induce too much noise but also resolve the problem of shortage of sample. Experimental results on Tan corpus dataset show that the algorithm can effectively improve the classification performance on imbalanced data sets, especially in the cases when classification performance is heavily affected by class imbalance.","PeriodicalId":336322,"journal":{"name":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"A bi-directional sampling based on K-means method for imbalance text classification\",\"authors\":\"Jiapeng Song, Xianglin Huang, Sijun Qin, Qing Song\",\"doi\":\"10.1109/ICIS.2016.7550920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the imbalanced data classify-cation problem and proposes bi-directional sampling based on clustering (BDSK) for the imbalanced data classification. This algorithm combines SMOTE over-sampling algorithm and under-sampling algorithm based on K-Means to solve the within-class imbalance problem and the between-class imbalance problem. It not only avoid induce too much noise but also resolve the problem of shortage of sample. Experimental results on Tan corpus dataset show that the algorithm can effectively improve the classification performance on imbalanced data sets, especially in the cases when classification performance is heavily affected by class imbalance.\",\"PeriodicalId\":336322,\"journal\":{\"name\":\"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIS.2016.7550920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2016.7550920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

研究了不平衡数据的分类问题,提出了基于聚类的双向采样(BDSK)方法对不平衡数据进行分类。该算法结合了SMOTE过采样算法和基于K-Means的欠采样算法来解决类内不平衡问题和类间不平衡问题。它既避免了产生过多的噪声,又解决了样品不足的问题。在Tan语料库数据集上的实验结果表明,该算法可以有效地提高在不平衡数据集上的分类性能,特别是在分类性能受到类不平衡严重影响的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bi-directional sampling based on K-means method for imbalance text classification
This paper studies the imbalanced data classify-cation problem and proposes bi-directional sampling based on clustering (BDSK) for the imbalanced data classification. This algorithm combines SMOTE over-sampling algorithm and under-sampling algorithm based on K-Means to solve the within-class imbalance problem and the between-class imbalance problem. It not only avoid induce too much noise but also resolve the problem of shortage of sample. Experimental results on Tan corpus dataset show that the algorithm can effectively improve the classification performance on imbalanced data sets, especially in the cases when classification performance is heavily affected by class imbalance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信