功能状态空间不可达性的自动纠正方法

Ryan Berryhill, A. Veneris
{"title":"功能状态空间不可达性的自动纠正方法","authors":"Ryan Berryhill, A. Veneris","doi":"10.5555/2755753.2757138","DOIUrl":null,"url":null,"abstract":"In the modern design cycle, significant manual resources are dedicated to fix a design when verification shows that a state is not reachable. Today there is little automation to aid an engineer in understanding why a state is not reachable and how to correct it. This paper presents a novel methodology that automates this task. In detail, a process that involves intertwined steps of state approximation, reachability analysis and traditional debugging is developed to identify design locations where fixes can be applied so the target state becomes reachable. An initial formulation identifies such error locations that, when corrected, can make the target state reachable directly from the existing reachable set of states. This is later extended for the cases where more than one state transition is required to reach an unreachable state from the existing reachable set. Empirical results on industrial level designs show a performance which is an order of magnitude faster than the state-of-the-art confirming the practicality of the proposed automated methodology.","PeriodicalId":162450,"journal":{"name":"2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Automated rectification methodologies to functional state-space unreachability\",\"authors\":\"Ryan Berryhill, A. Veneris\",\"doi\":\"10.5555/2755753.2757138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the modern design cycle, significant manual resources are dedicated to fix a design when verification shows that a state is not reachable. Today there is little automation to aid an engineer in understanding why a state is not reachable and how to correct it. This paper presents a novel methodology that automates this task. In detail, a process that involves intertwined steps of state approximation, reachability analysis and traditional debugging is developed to identify design locations where fixes can be applied so the target state becomes reachable. An initial formulation identifies such error locations that, when corrected, can make the target state reachable directly from the existing reachable set of states. This is later extended for the cases where more than one state transition is required to reach an unreachable state from the existing reachable set. Empirical results on industrial level designs show a performance which is an order of magnitude faster than the state-of-the-art confirming the practicality of the proposed automated methodology.\",\"PeriodicalId\":162450,\"journal\":{\"name\":\"2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2755753.2757138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2755753.2757138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在现代设计周期中,当验证显示状态不可达时,大量的人工资源用于修复设计。今天,几乎没有自动化来帮助工程师理解为什么状态不可达以及如何纠正它。本文提出了一种使这项任务自动化的新方法。详细地说,开发了一个包含状态近似、可达性分析和传统调试等步骤的过程,以确定可以应用修复的设计位置,从而使目标状态变为可达状态。一个初始公式确定这样的错误位置,当修正后,可以使目标状态直接从现有的可到达状态集到达。稍后将扩展到需要多个状态转换才能从现有可达集到达不可达状态的情况。工业水平设计的实证结果表明,性能比最先进的技术快一个数量级,证实了所提出的自动化方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated rectification methodologies to functional state-space unreachability
In the modern design cycle, significant manual resources are dedicated to fix a design when verification shows that a state is not reachable. Today there is little automation to aid an engineer in understanding why a state is not reachable and how to correct it. This paper presents a novel methodology that automates this task. In detail, a process that involves intertwined steps of state approximation, reachability analysis and traditional debugging is developed to identify design locations where fixes can be applied so the target state becomes reachable. An initial formulation identifies such error locations that, when corrected, can make the target state reachable directly from the existing reachable set of states. This is later extended for the cases where more than one state transition is required to reach an unreachable state from the existing reachable set. Empirical results on industrial level designs show a performance which is an order of magnitude faster than the state-of-the-art confirming the practicality of the proposed automated methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信