使用基于变压器双向编码器表征 (BERT) 的神经集合模型进行幽默检测

Rida Miraj, Masaki Aono
{"title":"使用基于变压器双向编码器表征 (BERT) 的神经集合模型进行幽默检测","authors":"Rida Miraj, Masaki Aono","doi":"10.1109/ICAICTA53211.2021.9640260","DOIUrl":null,"url":null,"abstract":"A lot of research has been done to aim to find out what makes someone laugh in a text. In recent years, detecting humor in written sentences has shown to be a fascinating and challenging endeavor. We describe a mechanism for identifying humor in brief texts in this paper. We employ a Bidirectional Encoder Representations from Transformers (BERT) architecture because of its benefits in learning from sentence context. Our proposed methodology also uses some other embedding models e.g., Word2Vec or FastText to generate Embeddings for sentences of a given text and uses these Embeddings as inputs in a neural ensemble network. We illustrate the efficacy of this methodology. We significantly reduced our root mean squared error by using this technique.","PeriodicalId":217463,"journal":{"name":"2021 8th International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Humor Detection Using a Bidirectional Encoder Representations from Transformers (BERT) based Neural Ensemble Model\",\"authors\":\"Rida Miraj, Masaki Aono\",\"doi\":\"10.1109/ICAICTA53211.2021.9640260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lot of research has been done to aim to find out what makes someone laugh in a text. In recent years, detecting humor in written sentences has shown to be a fascinating and challenging endeavor. We describe a mechanism for identifying humor in brief texts in this paper. We employ a Bidirectional Encoder Representations from Transformers (BERT) architecture because of its benefits in learning from sentence context. Our proposed methodology also uses some other embedding models e.g., Word2Vec or FastText to generate Embeddings for sentences of a given text and uses these Embeddings as inputs in a neural ensemble network. We illustrate the efficacy of this methodology. We significantly reduced our root mean squared error by using this technique.\",\"PeriodicalId\":217463,\"journal\":{\"name\":\"2021 8th International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICTA53211.2021.9640260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA53211.2021.9640260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了找出文章中能让人发笑的地方,人们进行了大量研究。近年来,检测书面句子中的幽默感已成为一项极具吸引力和挑战性的工作。我们在本文中描述了一种在简短文本中识别幽默的机制。我们采用了双向变换器编码器表征(BERT)架构,因为它在从句子上下文中学习方面具有优势。我们提出的方法还使用了其他一些嵌入模型,如 Word2Vec 或 FastText,为给定文本的句子生成嵌入,并将这些嵌入作为神经集合网络的输入。我们说明了这种方法的有效性。通过使用这种技术,我们大大降低了均方根误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Humor Detection Using a Bidirectional Encoder Representations from Transformers (BERT) based Neural Ensemble Model
A lot of research has been done to aim to find out what makes someone laugh in a text. In recent years, detecting humor in written sentences has shown to be a fascinating and challenging endeavor. We describe a mechanism for identifying humor in brief texts in this paper. We employ a Bidirectional Encoder Representations from Transformers (BERT) architecture because of its benefits in learning from sentence context. Our proposed methodology also uses some other embedding models e.g., Word2Vec or FastText to generate Embeddings for sentences of a given text and uses these Embeddings as inputs in a neural ensemble network. We illustrate the efficacy of this methodology. We significantly reduced our root mean squared error by using this technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信