利用深度学习算法检测肺栓塞

A. Sekhar, L. Suresh
{"title":"利用深度学习算法检测肺栓塞","authors":"A. Sekhar, L. Suresh","doi":"10.1109/ICECCT56650.2023.10179765","DOIUrl":null,"url":null,"abstract":"Nowadays, pulmonary vascular disorders, which might result in pulmonary emboli or pulmonary hypertension, affect majority of patients. To diagnose alterations in vascular trees, a manual and automatic study of the ill person's chest CT imaging is performed. The manual analysis of CTPA scans is time-consuming, non-standardized, and exhausting. Therefore, semi-automatic and automatic vascular tree separation in CTPA scans is increasingly used, which enables medical professionals to precisely identify aberrant conditions. Different techniques for pulmonary vascular disease identification and classification using deep learning and machine learning methods have been carried out recently. Here we are using deep learning algorithms like Resnet50,Densenet121 and VGG19 for automatic classification of pulmonary vessels for detecting pulmonary diseases with increased accuracy.","PeriodicalId":180790,"journal":{"name":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Pulmonary Embolism using Deep Learning Algorithms\",\"authors\":\"A. Sekhar, L. Suresh\",\"doi\":\"10.1109/ICECCT56650.2023.10179765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, pulmonary vascular disorders, which might result in pulmonary emboli or pulmonary hypertension, affect majority of patients. To diagnose alterations in vascular trees, a manual and automatic study of the ill person's chest CT imaging is performed. The manual analysis of CTPA scans is time-consuming, non-standardized, and exhausting. Therefore, semi-automatic and automatic vascular tree separation in CTPA scans is increasingly used, which enables medical professionals to precisely identify aberrant conditions. Different techniques for pulmonary vascular disease identification and classification using deep learning and machine learning methods have been carried out recently. Here we are using deep learning algorithms like Resnet50,Densenet121 and VGG19 for automatic classification of pulmonary vessels for detecting pulmonary diseases with increased accuracy.\",\"PeriodicalId\":180790,\"journal\":{\"name\":\"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCT56650.2023.10179765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT56650.2023.10179765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,肺血管疾病影响了大多数患者,可导致肺栓塞或肺动脉高压。为了诊断血管树的改变,对病人的胸部CT成像进行手动和自动研究。CTPA扫描的手动分析耗时、非标准化且令人筋疲力尽。因此,CTPA扫描中的半自动和自动血管树分离越来越多地被使用,这使得医疗专业人员能够准确地识别异常情况。利用深度学习和机器学习方法进行肺血管疾病识别和分类的不同技术最近已经开展。在这里,我们正在使用Resnet50、Densenet121和VGG19等深度学习算法来自动分类肺血管,以提高检测肺部疾病的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Pulmonary Embolism using Deep Learning Algorithms
Nowadays, pulmonary vascular disorders, which might result in pulmonary emboli or pulmonary hypertension, affect majority of patients. To diagnose alterations in vascular trees, a manual and automatic study of the ill person's chest CT imaging is performed. The manual analysis of CTPA scans is time-consuming, non-standardized, and exhausting. Therefore, semi-automatic and automatic vascular tree separation in CTPA scans is increasingly used, which enables medical professionals to precisely identify aberrant conditions. Different techniques for pulmonary vascular disease identification and classification using deep learning and machine learning methods have been carried out recently. Here we are using deep learning algorithms like Resnet50,Densenet121 and VGG19 for automatic classification of pulmonary vessels for detecting pulmonary diseases with increased accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信