{"title":"基于扩展卡尔曼滤波的压电微定位系统滑模控制","authors":"Qingsong Xu, Yangmin Li","doi":"10.1109/ICAL.2010.5585322","DOIUrl":null,"url":null,"abstract":"In this paper, a sliding mode control with perturbation estimation (SMCPE) using an extended Kalman filter (EKF) is proposed for the motion tracking control of a micropositioning system with piezoelectric actuation. Based on the solely measurable position information, the EKF on-line estimates not only the velocity but also the hysteresis term, which are used by the SMCPE for real-time control. The feasibility of the proposed control scheme is demonstrated by experimental studies on a XYZ micropositioning stage prototype. Results show that the EKF-based sliding mode control can reduce the hysteresis to a negligible level and lead to a motion tracking with submicron accuracy, which provides a sound base of practical control of the micropositioning system for micro/nano scale manipulation.","PeriodicalId":393739,"journal":{"name":"2010 IEEE International Conference on Automation and Logistics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Sliding mode control of a piezo-driven micropositioning system using extended Kalman filter\",\"authors\":\"Qingsong Xu, Yangmin Li\",\"doi\":\"10.1109/ICAL.2010.5585322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a sliding mode control with perturbation estimation (SMCPE) using an extended Kalman filter (EKF) is proposed for the motion tracking control of a micropositioning system with piezoelectric actuation. Based on the solely measurable position information, the EKF on-line estimates not only the velocity but also the hysteresis term, which are used by the SMCPE for real-time control. The feasibility of the proposed control scheme is demonstrated by experimental studies on a XYZ micropositioning stage prototype. Results show that the EKF-based sliding mode control can reduce the hysteresis to a negligible level and lead to a motion tracking with submicron accuracy, which provides a sound base of practical control of the micropositioning system for micro/nano scale manipulation.\",\"PeriodicalId\":393739,\"journal\":{\"name\":\"2010 IEEE International Conference on Automation and Logistics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Automation and Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAL.2010.5585322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2010.5585322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sliding mode control of a piezo-driven micropositioning system using extended Kalman filter
In this paper, a sliding mode control with perturbation estimation (SMCPE) using an extended Kalman filter (EKF) is proposed for the motion tracking control of a micropositioning system with piezoelectric actuation. Based on the solely measurable position information, the EKF on-line estimates not only the velocity but also the hysteresis term, which are used by the SMCPE for real-time control. The feasibility of the proposed control scheme is demonstrated by experimental studies on a XYZ micropositioning stage prototype. Results show that the EKF-based sliding mode control can reduce the hysteresis to a negligible level and lead to a motion tracking with submicron accuracy, which provides a sound base of practical control of the micropositioning system for micro/nano scale manipulation.