元表面:理论基础与应用综述

R. Caputo, A. Ferraro
{"title":"元表面:理论基础与应用综述","authors":"R. Caputo, A. Ferraro","doi":"10.1063/9780735422902_001","DOIUrl":null,"url":null,"abstract":"In the last 20 years, metamaterials have attracted much attention for their exotic physical behaviors not commonly present in nature. However, this class of micro- and nanostructured artificial media, characterized by groundbreaking electromagnetic and photonic properties, has encountered difficulty in entering industrial upscale and end-user device mass production. Indeed, high losses and strong dispersion, related to the use of metallic structures, as well as the difficulty of fabricating micro- and nanoscale 3D structures, have hindered practical applications of metamaterials. On the contrary, 2D metamaterials or metasurfaces with negligible height, made of a single or few layers, offer much lower losses and a natural advantage in terms of fabrication with standard lithography or nanoimprint replication techniques. Moreover, metasurfaces allow a spatially varying optical response in terms of scattering amplitude, phase, and polarization. In the specific case of metalenses, optical wavefronts can be shaped and designed at will and eventually integrated with tunable and functional materials to achieve active control and greatly enhanced nonlinear response. In this introductory chapter, key concepts about metasurfaces physics are introduced evidencing peculiar behaviors. A general classification of metasurfaces follows in terms of constituting materials and their assembly, resulting in metastructures with specific application and functionalities.","PeriodicalId":305057,"journal":{"name":"Hybrid Flatland Metastructures","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metasurfaces: Theoretical Basis and Application Overview\",\"authors\":\"R. Caputo, A. Ferraro\",\"doi\":\"10.1063/9780735422902_001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last 20 years, metamaterials have attracted much attention for their exotic physical behaviors not commonly present in nature. However, this class of micro- and nanostructured artificial media, characterized by groundbreaking electromagnetic and photonic properties, has encountered difficulty in entering industrial upscale and end-user device mass production. Indeed, high losses and strong dispersion, related to the use of metallic structures, as well as the difficulty of fabricating micro- and nanoscale 3D structures, have hindered practical applications of metamaterials. On the contrary, 2D metamaterials or metasurfaces with negligible height, made of a single or few layers, offer much lower losses and a natural advantage in terms of fabrication with standard lithography or nanoimprint replication techniques. Moreover, metasurfaces allow a spatially varying optical response in terms of scattering amplitude, phase, and polarization. In the specific case of metalenses, optical wavefronts can be shaped and designed at will and eventually integrated with tunable and functional materials to achieve active control and greatly enhanced nonlinear response. In this introductory chapter, key concepts about metasurfaces physics are introduced evidencing peculiar behaviors. A general classification of metasurfaces follows in terms of constituting materials and their assembly, resulting in metastructures with specific application and functionalities.\",\"PeriodicalId\":305057,\"journal\":{\"name\":\"Hybrid Flatland Metastructures\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hybrid Flatland Metastructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/9780735422902_001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hybrid Flatland Metastructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/9780735422902_001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的20年里,超材料因其在自然界中不常见的奇特物理行为而引起了人们的广泛关注。然而,这类具有开创性的电磁和光子特性的微纳米结构人工介质在进入工业高端和最终用户设备量产方面遇到了困难。事实上,与金属结构的使用有关的高损耗和强色散,以及制造微纳米级3D结构的困难,阻碍了超材料的实际应用。相反,高度可忽略不计的二维超材料或超表面,由单层或几层制成,具有更低的损耗,并且在使用标准光刻或纳米压印复制技术制造方面具有天然优势。此外,超表面允许在散射振幅,相位和偏振方面的空间变化的光学响应。在超透镜的具体情况下,光波前可以随意塑造和设计,并最终与可调谐和功能材料相结合,实现主动控制,大大增强了非线性响应。在本导论章中,介绍了有关超表面物理的关键概念,以证明其特殊行为。元表面的一般分类遵循构成材料及其组装,从而产生具有特定应用和功能的元结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metasurfaces: Theoretical Basis and Application Overview
In the last 20 years, metamaterials have attracted much attention for their exotic physical behaviors not commonly present in nature. However, this class of micro- and nanostructured artificial media, characterized by groundbreaking electromagnetic and photonic properties, has encountered difficulty in entering industrial upscale and end-user device mass production. Indeed, high losses and strong dispersion, related to the use of metallic structures, as well as the difficulty of fabricating micro- and nanoscale 3D structures, have hindered practical applications of metamaterials. On the contrary, 2D metamaterials or metasurfaces with negligible height, made of a single or few layers, offer much lower losses and a natural advantage in terms of fabrication with standard lithography or nanoimprint replication techniques. Moreover, metasurfaces allow a spatially varying optical response in terms of scattering amplitude, phase, and polarization. In the specific case of metalenses, optical wavefronts can be shaped and designed at will and eventually integrated with tunable and functional materials to achieve active control and greatly enhanced nonlinear response. In this introductory chapter, key concepts about metasurfaces physics are introduced evidencing peculiar behaviors. A general classification of metasurfaces follows in terms of constituting materials and their assembly, resulting in metastructures with specific application and functionalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信