数学形态学与自适应伽玛校正的融合用于图像去雾和可见度增强

Biswarup Ganguly, Anwesa Bhattacharya, Ananya Srivastava, D. Dey, S. Munshi
{"title":"数学形态学与自适应伽玛校正的融合用于图像去雾和可见度增强","authors":"Biswarup Ganguly, Anwesa Bhattacharya, Ananya Srivastava, D. Dey, S. Munshi","doi":"10.1109/ASPCON49795.2020.9276734","DOIUrl":null,"url":null,"abstract":"Images contaminated with haze generally have faded colors and low contrast, and thus affect object tracking, object recognition, intelligent surveillance, etc. Therefore, dehazing becomes necessary and is aimed to recover the image without color distortion. This paper presents a dehazing approach combining dark channel prior (DCP) with mathematical morphology and a visibility enhancement algorithm. Adaptive gamma correction based weighted distribution (AGCWD) is employed for visibility restoration with a fast processing time. The proposed method is able to eliminate halo artifacts in the restored images. Experimental results obtained are compared with the state- of- the- art dehazing algorithms using some standard metrics.","PeriodicalId":193814,"journal":{"name":"2020 IEEE Applied Signal Processing Conference (ASPCON)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fusion of Mathematical Morphology with Adaptive Gamma Correction for Dehazing and Visibility Enhancement of Images\",\"authors\":\"Biswarup Ganguly, Anwesa Bhattacharya, Ananya Srivastava, D. Dey, S. Munshi\",\"doi\":\"10.1109/ASPCON49795.2020.9276734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images contaminated with haze generally have faded colors and low contrast, and thus affect object tracking, object recognition, intelligent surveillance, etc. Therefore, dehazing becomes necessary and is aimed to recover the image without color distortion. This paper presents a dehazing approach combining dark channel prior (DCP) with mathematical morphology and a visibility enhancement algorithm. Adaptive gamma correction based weighted distribution (AGCWD) is employed for visibility restoration with a fast processing time. The proposed method is able to eliminate halo artifacts in the restored images. Experimental results obtained are compared with the state- of- the- art dehazing algorithms using some standard metrics.\",\"PeriodicalId\":193814,\"journal\":{\"name\":\"2020 IEEE Applied Signal Processing Conference (ASPCON)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Applied Signal Processing Conference (ASPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPCON49795.2020.9276734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Applied Signal Processing Conference (ASPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPCON49795.2020.9276734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

被雾霾污染的图像一般颜色褪色,对比度低,从而影响目标跟踪、目标识别、智能监控等。因此,除雾是必要的,其目的是恢复图像没有颜色失真。本文提出了一种将暗信道先验(DCP)与数学形态学相结合的去雾方法和一种可见性增强算法。采用基于自适应伽玛校正的加权分布(AGCWD)方法恢复能见度,处理时间短。该方法能够消除恢复图像中的晕影。用一些标准度量将实验结果与目前最先进的除雾算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion of Mathematical Morphology with Adaptive Gamma Correction for Dehazing and Visibility Enhancement of Images
Images contaminated with haze generally have faded colors and low contrast, and thus affect object tracking, object recognition, intelligent surveillance, etc. Therefore, dehazing becomes necessary and is aimed to recover the image without color distortion. This paper presents a dehazing approach combining dark channel prior (DCP) with mathematical morphology and a visibility enhancement algorithm. Adaptive gamma correction based weighted distribution (AGCWD) is employed for visibility restoration with a fast processing time. The proposed method is able to eliminate halo artifacts in the restored images. Experimental results obtained are compared with the state- of- the- art dehazing algorithms using some standard metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信