基于YOLOv5的RGB图像上柑橘和覆盆子检测的深度神经网络

K. Sudars, I. Namatēvs, J. Judvaitis, Rihards Balass, Arturs Nikulins, Astile Peter, S. Strautiņa, E. Kaufmane, I. Kalnina
{"title":"基于YOLOv5的RGB图像上柑橘和覆盆子检测的深度神经网络","authors":"K. Sudars, I. Namatēvs, J. Judvaitis, Rihards Balass, Arturs Nikulins, Astile Peter, S. Strautiņa, E. Kaufmane, I. Kalnina","doi":"10.1109/MTTW56973.2022.9942550","DOIUrl":null,"url":null,"abstract":"Object detection based on deep learning can be widely used in all kinds of agricultural applications. In this paper, we present a deep neural network (DNN) model for quince and raspberry detection on RGB images. The trained DNN model is based on YOLOv5 architecture and it has 7 berry classes related to the berry development stage. YOLOv5 provides sufficiently good performance and precision trade-off. It is useful in the process of quince and raspberry phenotyping for the agriculture experts, where the yield and berry size parameters have to be estimated. Using our DNN model we have shown that it is possible to achieve a mean Average Precision close to 80.9 % and in some cases (Average Precision) close to 95 % for some classes. The DNN model is trained on labeled data gathered during the AKFEN project. The developed raspberry and quince detector is freely available at the GIT repository [1]. Further, the research on Sensor Networks, Wireless Systems, 3D point cloud processing and multi-spectral image processing has to be carried out leading to high-throughput phenotyping.","PeriodicalId":426797,"journal":{"name":"2022 Workshop on Microwave Theory and Techniques in Wireless Communications (MTTW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"YOLOv5 Deep Neural Network for Quince and Raspberry Detection on RGB Images\",\"authors\":\"K. Sudars, I. Namatēvs, J. Judvaitis, Rihards Balass, Arturs Nikulins, Astile Peter, S. Strautiņa, E. Kaufmane, I. Kalnina\",\"doi\":\"10.1109/MTTW56973.2022.9942550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection based on deep learning can be widely used in all kinds of agricultural applications. In this paper, we present a deep neural network (DNN) model for quince and raspberry detection on RGB images. The trained DNN model is based on YOLOv5 architecture and it has 7 berry classes related to the berry development stage. YOLOv5 provides sufficiently good performance and precision trade-off. It is useful in the process of quince and raspberry phenotyping for the agriculture experts, where the yield and berry size parameters have to be estimated. Using our DNN model we have shown that it is possible to achieve a mean Average Precision close to 80.9 % and in some cases (Average Precision) close to 95 % for some classes. The DNN model is trained on labeled data gathered during the AKFEN project. The developed raspberry and quince detector is freely available at the GIT repository [1]. Further, the research on Sensor Networks, Wireless Systems, 3D point cloud processing and multi-spectral image processing has to be carried out leading to high-throughput phenotyping.\",\"PeriodicalId\":426797,\"journal\":{\"name\":\"2022 Workshop on Microwave Theory and Techniques in Wireless Communications (MTTW)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Workshop on Microwave Theory and Techniques in Wireless Communications (MTTW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MTTW56973.2022.9942550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Workshop on Microwave Theory and Techniques in Wireless Communications (MTTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MTTW56973.2022.9942550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于深度学习的目标检测可以广泛应用于各种农业应用中。在本文中,我们提出了一种深度神经网络(DNN)模型,用于在RGB图像上检测柑橘和覆盆子。训练的DNN模型基于YOLOv5架构,它有7个与浆果发育阶段相关的浆果类。YOLOv5提供了足够好的性能和精度权衡。它是有用的,在过程中的木瓜和覆盆子表型的农业专家,其中产量和浆果大小参数的估计。使用我们的DNN模型,我们已经表明有可能实现接近80.9%的平均平均精度,在某些情况下(平均精度)接近95%。DNN模型是在AKFEN项目期间收集的标记数据上进行训练的。开发的覆盆子和榅桲检测器可以在GIT存储库中免费获得[1]。此外,传感器网络、无线系统、3D点云处理和多光谱图像处理的研究必须进行,以实现高通量表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YOLOv5 Deep Neural Network for Quince and Raspberry Detection on RGB Images
Object detection based on deep learning can be widely used in all kinds of agricultural applications. In this paper, we present a deep neural network (DNN) model for quince and raspberry detection on RGB images. The trained DNN model is based on YOLOv5 architecture and it has 7 berry classes related to the berry development stage. YOLOv5 provides sufficiently good performance and precision trade-off. It is useful in the process of quince and raspberry phenotyping for the agriculture experts, where the yield and berry size parameters have to be estimated. Using our DNN model we have shown that it is possible to achieve a mean Average Precision close to 80.9 % and in some cases (Average Precision) close to 95 % for some classes. The DNN model is trained on labeled data gathered during the AKFEN project. The developed raspberry and quince detector is freely available at the GIT repository [1]. Further, the research on Sensor Networks, Wireless Systems, 3D point cloud processing and multi-spectral image processing has to be carried out leading to high-throughput phenotyping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信