M. Bensenouci, Mohamed Ali, H. Escid, Y. Savaria, M. Sawan
{"title":"使用斜率相关脉冲发生器的基于vco的非均匀采样ADC","authors":"M. Bensenouci, Mohamed Ali, H. Escid, Y. Savaria, M. Sawan","doi":"10.1109/ICM50269.2020.9331795","DOIUrl":null,"url":null,"abstract":"This paper presents a voltage-controlled oscillator (VCO)-based nonuniform sampling analog-to-digital converter (ADC) as an alternative to the level-crossing (LC)-based converters for digitizing biopotential signals. This work aims to provide a good signal-to-noise-and-distortion ratio at a low average sampling rate. In the proposed conversion method, a slope-dependent pulse generation block is used to provide a variable sample rate adjusted according to the input signal’s slope. Simulation results show that the introduced method meets a target reconstruction quality with a sampling rate approaching 92 Sps, while on the same MIT-BIH Arrhythmia N 106 ECG benchmark, the classic LC-based approach requires a sampling rate higher than 500 Sps. The benefits of the proposed method are more remarkable when the input signal is very noisy. The proposed ADC achieves a compression ratio close to 4, but with only 5.4% root-mean-square difference when tested using the MIT-BIH Arrhythmia Database.","PeriodicalId":243968,"journal":{"name":"2020 32nd International Conference on Microelectronics (ICM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A VCO-Based Nonuniform Sampling ADC Using a Slope-Dependent Pulse Generator\",\"authors\":\"M. Bensenouci, Mohamed Ali, H. Escid, Y. Savaria, M. Sawan\",\"doi\":\"10.1109/ICM50269.2020.9331795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a voltage-controlled oscillator (VCO)-based nonuniform sampling analog-to-digital converter (ADC) as an alternative to the level-crossing (LC)-based converters for digitizing biopotential signals. This work aims to provide a good signal-to-noise-and-distortion ratio at a low average sampling rate. In the proposed conversion method, a slope-dependent pulse generation block is used to provide a variable sample rate adjusted according to the input signal’s slope. Simulation results show that the introduced method meets a target reconstruction quality with a sampling rate approaching 92 Sps, while on the same MIT-BIH Arrhythmia N 106 ECG benchmark, the classic LC-based approach requires a sampling rate higher than 500 Sps. The benefits of the proposed method are more remarkable when the input signal is very noisy. The proposed ADC achieves a compression ratio close to 4, but with only 5.4% root-mean-square difference when tested using the MIT-BIH Arrhythmia Database.\",\"PeriodicalId\":243968,\"journal\":{\"name\":\"2020 32nd International Conference on Microelectronics (ICM)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 32nd International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM50269.2020.9331795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 32nd International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM50269.2020.9331795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A VCO-Based Nonuniform Sampling ADC Using a Slope-Dependent Pulse Generator
This paper presents a voltage-controlled oscillator (VCO)-based nonuniform sampling analog-to-digital converter (ADC) as an alternative to the level-crossing (LC)-based converters for digitizing biopotential signals. This work aims to provide a good signal-to-noise-and-distortion ratio at a low average sampling rate. In the proposed conversion method, a slope-dependent pulse generation block is used to provide a variable sample rate adjusted according to the input signal’s slope. Simulation results show that the introduced method meets a target reconstruction quality with a sampling rate approaching 92 Sps, while on the same MIT-BIH Arrhythmia N 106 ECG benchmark, the classic LC-based approach requires a sampling rate higher than 500 Sps. The benefits of the proposed method are more remarkable when the input signal is very noisy. The proposed ADC achieves a compression ratio close to 4, but with only 5.4% root-mean-square difference when tested using the MIT-BIH Arrhythmia Database.