基于边缘实时预测的ml辅助IC测试分箱

Tomonori Honda, Thijs Haarhuis, J. D. David, Henri Hannink, Greg Prewitt, Vishnu Rajan
{"title":"基于边缘实时预测的ml辅助IC测试分箱","authors":"Tomonori Honda, Thijs Haarhuis, J. D. David, Henri Hannink, Greg Prewitt, Vishnu Rajan","doi":"10.1109/EDTM55494.2023.10102972","DOIUrl":null,"url":null,"abstract":"IC Test is a critical part of semiconductor manufacturing and proper die binning and material disposition has an important impact on the overall yield and on the process monitoring and failure mode diagnostics. Edge analytics are becoming an increasingly important aspect of die disposition. By intercepting parts in real-time at the wafer test step, we can save downstream processing needs. In this paper we show how a machine learning model running on the ACS $\\text{Edge}^{\\text{TM}}$ infrastructure can provide 20-40x improvement in identification and binning of fail parts compared to conventional statistical screening methods. We also show that by incorporating known cost data, we can automatically guide users to optimally tune the model for maximal failure capture with minimal overkill and realize significant business savings.","PeriodicalId":418413,"journal":{"name":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ML-assisted IC Test Binning with Real-Time Prediction at the Edge\",\"authors\":\"Tomonori Honda, Thijs Haarhuis, J. D. David, Henri Hannink, Greg Prewitt, Vishnu Rajan\",\"doi\":\"10.1109/EDTM55494.2023.10102972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IC Test is a critical part of semiconductor manufacturing and proper die binning and material disposition has an important impact on the overall yield and on the process monitoring and failure mode diagnostics. Edge analytics are becoming an increasingly important aspect of die disposition. By intercepting parts in real-time at the wafer test step, we can save downstream processing needs. In this paper we show how a machine learning model running on the ACS $\\\\text{Edge}^{\\\\text{TM}}$ infrastructure can provide 20-40x improvement in identification and binning of fail parts compared to conventional statistical screening methods. We also show that by incorporating known cost data, we can automatically guide users to optimally tune the model for maximal failure capture with minimal overkill and realize significant business savings.\",\"PeriodicalId\":418413,\"journal\":{\"name\":\"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDTM55494.2023.10102972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM55494.2023.10102972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

集成电路测试是半导体制造的关键环节,正确的封装和材料配置对整体良率、过程监控和故障模式诊断具有重要影响。边缘分析正在成为模具处置中越来越重要的方面。通过在晶圆测试阶段实时截取零件,我们可以节省下游加工需求。在本文中,我们展示了在ACS $\text{Edge}^{\text{TM}}$基础设施上运行的机器学习模型与传统的统计筛选方法相比,如何在故障部件的识别和分类方面提供20-40倍的改进。我们还展示了,通过合并已知的成本数据,我们可以自动引导用户以最小的过度成本对模型进行优化,以获得最大的故障捕获,并实现显著的业务节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ML-assisted IC Test Binning with Real-Time Prediction at the Edge
IC Test is a critical part of semiconductor manufacturing and proper die binning and material disposition has an important impact on the overall yield and on the process monitoring and failure mode diagnostics. Edge analytics are becoming an increasingly important aspect of die disposition. By intercepting parts in real-time at the wafer test step, we can save downstream processing needs. In this paper we show how a machine learning model running on the ACS $\text{Edge}^{\text{TM}}$ infrastructure can provide 20-40x improvement in identification and binning of fail parts compared to conventional statistical screening methods. We also show that by incorporating known cost data, we can automatically guide users to optimally tune the model for maximal failure capture with minimal overkill and realize significant business savings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信