利用不变子空间的延拓,改进了带灵敏度跟踪电力系统临界特征值的算法

C. Luo, V. Ajjarapu
{"title":"利用不变子空间的延拓,改进了带灵敏度跟踪电力系统临界特征值的算法","authors":"C. Luo, V. Ajjarapu","doi":"10.1109/IREP.2007.4410558","DOIUrl":null,"url":null,"abstract":"The critical eigenvalue tracing in reference [1] is further modified to extract further useful information. This includes the direction and the speed of movement of eigenvalues. The algorithm is both robust and efficient. The calculation of invariant subspaces is basically solving Riccati equation, which is equivalent to solving bordered matrix equations of Sylvester type. The bordered Bartels-Stewart algorithm is used to solve it effectively. The subspace continuation technique allows us to uniquely identify the image of the movement of the set of the critical eigenvalues w.r.t. the change of the continuation parameter (such as system load level etc.). Furthermore, the eigenvalue and eigenvector sensitivities can also be obtained as by-products. An eigenvalue index is proposed to determine the critical eigenvalue that might affect the stability change of the system. It can be used to estimate the oscillatory stability margin boundary of the system during the continuation by linear estimation. Finally, the numerical techniques are applied to study the New England 39 - bus system.","PeriodicalId":214545,"journal":{"name":"2007 iREP Symposium - Bulk Power System Dynamics and Control - VII. Revitalizing Operational Reliability","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modified algorithm to trace critical eigenvalues of power system with sensitivities via continuation of invariant subspaces\",\"authors\":\"C. Luo, V. Ajjarapu\",\"doi\":\"10.1109/IREP.2007.4410558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The critical eigenvalue tracing in reference [1] is further modified to extract further useful information. This includes the direction and the speed of movement of eigenvalues. The algorithm is both robust and efficient. The calculation of invariant subspaces is basically solving Riccati equation, which is equivalent to solving bordered matrix equations of Sylvester type. The bordered Bartels-Stewart algorithm is used to solve it effectively. The subspace continuation technique allows us to uniquely identify the image of the movement of the set of the critical eigenvalues w.r.t. the change of the continuation parameter (such as system load level etc.). Furthermore, the eigenvalue and eigenvector sensitivities can also be obtained as by-products. An eigenvalue index is proposed to determine the critical eigenvalue that might affect the stability change of the system. It can be used to estimate the oscillatory stability margin boundary of the system during the continuation by linear estimation. Finally, the numerical techniques are applied to study the New England 39 - bus system.\",\"PeriodicalId\":214545,\"journal\":{\"name\":\"2007 iREP Symposium - Bulk Power System Dynamics and Control - VII. Revitalizing Operational Reliability\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 iREP Symposium - Bulk Power System Dynamics and Control - VII. Revitalizing Operational Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IREP.2007.4410558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 iREP Symposium - Bulk Power System Dynamics and Control - VII. Revitalizing Operational Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IREP.2007.4410558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

进一步修改文献[1]中的临界特征值跟踪,提取更多有用信息。这包括特征值的移动方向和速度。该算法鲁棒性好,效率高。不变子空间的计算基本上是求解Riccati方程,相当于求解Sylvester型的有边矩阵方程。采用有边barels - stewart算法对其进行了有效求解。子空间延拓技术允许我们在延拓参数(如系统负载水平等)变化的情况下,唯一地识别图像的临界特征值集的运动。此外,特征值和特征向量灵敏度也可以作为副产物得到。提出了一个特征值指标来确定可能影响系统稳定性变化的临界特征值。该方法可用于线性估计连续过程中系统的振荡稳定边界。最后,应用数值方法对新英格兰39路公交系统进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified algorithm to trace critical eigenvalues of power system with sensitivities via continuation of invariant subspaces
The critical eigenvalue tracing in reference [1] is further modified to extract further useful information. This includes the direction and the speed of movement of eigenvalues. The algorithm is both robust and efficient. The calculation of invariant subspaces is basically solving Riccati equation, which is equivalent to solving bordered matrix equations of Sylvester type. The bordered Bartels-Stewart algorithm is used to solve it effectively. The subspace continuation technique allows us to uniquely identify the image of the movement of the set of the critical eigenvalues w.r.t. the change of the continuation parameter (such as system load level etc.). Furthermore, the eigenvalue and eigenvector sensitivities can also be obtained as by-products. An eigenvalue index is proposed to determine the critical eigenvalue that might affect the stability change of the system. It can be used to estimate the oscillatory stability margin boundary of the system during the continuation by linear estimation. Finally, the numerical techniques are applied to study the New England 39 - bus system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信