一种基于轮廓的图像检索方法

Minqing Zhang, Xiaonan Chen, Xiaoyuan Yang, Juanli Sun
{"title":"一种基于轮廓的图像检索方法","authors":"Minqing Zhang, Xiaonan Chen, Xiaoyuan Yang, Juanli Sun","doi":"10.1109/CISE.2010.5677223","DOIUrl":null,"url":null,"abstract":"Compared to color and texture, contour is closer to human vision. So contour-based image retrieval has been a hot topic. However, existing methods can't obtain object contour effectively, which makes contour description and matching more difficult. To address these problems, this paper uses KPAC (Kernel-based Parametric Active Contour) to obtain the object contour, and proposes a novel method called LICS (Local Important Contour Sequence) for feature description and matching. Experimental results demonstrate that this approach achieves state-of-the-art performance in image retrieval.","PeriodicalId":232832,"journal":{"name":"2010 International Conference on Computational Intelligence and Software Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Contour-Based Method on Image Retrieval\",\"authors\":\"Minqing Zhang, Xiaonan Chen, Xiaoyuan Yang, Juanli Sun\",\"doi\":\"10.1109/CISE.2010.5677223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared to color and texture, contour is closer to human vision. So contour-based image retrieval has been a hot topic. However, existing methods can't obtain object contour effectively, which makes contour description and matching more difficult. To address these problems, this paper uses KPAC (Kernel-based Parametric Active Contour) to obtain the object contour, and proposes a novel method called LICS (Local Important Contour Sequence) for feature description and matching. Experimental results demonstrate that this approach achieves state-of-the-art performance in image retrieval.\",\"PeriodicalId\":232832,\"journal\":{\"name\":\"2010 International Conference on Computational Intelligence and Software Engineering\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational Intelligence and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISE.2010.5677223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISE.2010.5677223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与颜色和纹理相比,轮廓更接近人类的视觉。因此,基于轮廓的图像检索成为一个研究热点。然而,现有的方法不能有效地获得目标轮廓,这给轮廓描述和匹配增加了难度。针对这些问题,本文采用基于核的参数化活动轮廓(KPAC)方法获取目标轮廓,并提出了一种新的局部重要轮廓序列(LICS)方法进行特征描述和匹配。实验结果表明,该方法在图像检索中达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Contour-Based Method on Image Retrieval
Compared to color and texture, contour is closer to human vision. So contour-based image retrieval has been a hot topic. However, existing methods can't obtain object contour effectively, which makes contour description and matching more difficult. To address these problems, this paper uses KPAC (Kernel-based Parametric Active Contour) to obtain the object contour, and proposes a novel method called LICS (Local Important Contour Sequence) for feature description and matching. Experimental results demonstrate that this approach achieves state-of-the-art performance in image retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信