如果黎曼假设不正确

M. Mnatsakanyan
{"title":"如果黎曼假设不正确","authors":"M. Mnatsakanyan","doi":"10.2139/ssrn.3698012","DOIUrl":null,"url":null,"abstract":"If the hypothesis is not true, you can construct a sequence of numbers tending to zero this function, so that at these points the partial sum of this function multiplied by the number in the power of the argument reaches in the limit a predetermined any number from the extended complex plane, and the remainder of the multiplications by the number in the power argument remains uniformly bounded in any closed region inside the region of convergence of the Dirichlet series of this function.","PeriodicalId":379670,"journal":{"name":"DecisionSciRN: Probability (Sub-Topic)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"If the Riemann Hypothesis is Not Correct\",\"authors\":\"M. Mnatsakanyan\",\"doi\":\"10.2139/ssrn.3698012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If the hypothesis is not true, you can construct a sequence of numbers tending to zero this function, so that at these points the partial sum of this function multiplied by the number in the power of the argument reaches in the limit a predetermined any number from the extended complex plane, and the remainder of the multiplications by the number in the power argument remains uniformly bounded in any closed region inside the region of convergence of the Dirichlet series of this function.\",\"PeriodicalId\":379670,\"journal\":{\"name\":\"DecisionSciRN: Probability (Sub-Topic)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DecisionSciRN: Probability (Sub-Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3698012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DecisionSciRN: Probability (Sub-Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3698012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如果假设是不正确的,你可以建立一个数字序列趋于零这个函数,以便在这些点的部分和函数乘以数量的力量极限的参数达到预定的任意数量的扩展复平面,和其余的乘法的电力参数的数量仍然一致有界在任何封闭区域内区域的狄利克雷级数收敛这个函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
If the Riemann Hypothesis is Not Correct
If the hypothesis is not true, you can construct a sequence of numbers tending to zero this function, so that at these points the partial sum of this function multiplied by the number in the power of the argument reaches in the limit a predetermined any number from the extended complex plane, and the remainder of the multiplications by the number in the power argument remains uniformly bounded in any closed region inside the region of convergence of the Dirichlet series of this function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信