基于cam的检查点寄存器别名表的物理层研究与优化

Elham Safi, Andreas Moshovos, A. Veneris
{"title":"基于cam的检查点寄存器别名表的物理层研究与优化","authors":"Elham Safi, Andreas Moshovos, A. Veneris","doi":"10.1145/1393921.1393982","DOIUrl":null,"url":null,"abstract":"Using full-custom layouts in 130 nm technology, this work studies how the latency and energy of a checkpointed, CAM-based Register Alias Table (cRAT) vary as a function of the window size, the issue width, and the number of embedded global checkpoints (GCs). These results are compared to those of the SRAM-based RAT (sRAT). Understanding these variations is useful during the early stages of architectural exploration where physical level information is not yet available. It is found that compared to sRAT, cRAT is more sensitive to the number of physical registers and issue width, however, it is less sensitive to the number of GCs. In addition, beyond a certain number of GCs, cRAT becomes faster than its equivalent sRAT. For instance, this is true when a RAT for 64 architectural and 128 physical registers has at least 20 GCs. This work also proposes an energy optimization for the cRAT; this optimization selectively disables cRAT entries that do not result in a match during lookup. The energy savings are, for the most part, a function of the number of physical registers. For instance, for a cRAT with 128 entries energy is reduced by 40%.","PeriodicalId":166672,"journal":{"name":"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A physical level study and optimization of CAM-based checkpointed register alias table\",\"authors\":\"Elham Safi, Andreas Moshovos, A. Veneris\",\"doi\":\"10.1145/1393921.1393982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using full-custom layouts in 130 nm technology, this work studies how the latency and energy of a checkpointed, CAM-based Register Alias Table (cRAT) vary as a function of the window size, the issue width, and the number of embedded global checkpoints (GCs). These results are compared to those of the SRAM-based RAT (sRAT). Understanding these variations is useful during the early stages of architectural exploration where physical level information is not yet available. It is found that compared to sRAT, cRAT is more sensitive to the number of physical registers and issue width, however, it is less sensitive to the number of GCs. In addition, beyond a certain number of GCs, cRAT becomes faster than its equivalent sRAT. For instance, this is true when a RAT for 64 architectural and 128 physical registers has at least 20 GCs. This work also proposes an energy optimization for the cRAT; this optimization selectively disables cRAT entries that do not result in a match during lookup. The energy savings are, for the most part, a function of the number of physical registers. For instance, for a cRAT with 128 entries energy is reduced by 40%.\",\"PeriodicalId\":166672,\"journal\":{\"name\":\"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1393921.1393982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1393921.1393982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

使用130纳米技术的全自定义布局,本工作研究了检查点的延迟和能量如何随窗口大小、问题宽度和嵌入式全局检查点(gc)数量的变化而变化,基于cam的寄存器别名表(cRAT)。这些结果与基于sram的RAT (sRAT)的结果进行了比较。在尚未获得物理层信息的架构探索的早期阶段,理解这些变化是非常有用的。研究发现,与sRAT相比,cRAT对物理寄存器的数量和问题宽度更敏感,而对gc的数量不太敏感。此外,超过一定数量的gc后,cRAT会比等效的sRAT更快。例如,当64个体系结构寄存器和128个物理寄存器的RAT至少有20个gc时,这是正确的。本工作还提出了cRAT的能量优化方法;此优化有选择地禁用在查找过程中不会导致匹配的cRAT条目。在很大程度上,节能是物理寄存器数量的函数。例如,对于具有128个条目的cRAT,能量减少了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A physical level study and optimization of CAM-based checkpointed register alias table
Using full-custom layouts in 130 nm technology, this work studies how the latency and energy of a checkpointed, CAM-based Register Alias Table (cRAT) vary as a function of the window size, the issue width, and the number of embedded global checkpoints (GCs). These results are compared to those of the SRAM-based RAT (sRAT). Understanding these variations is useful during the early stages of architectural exploration where physical level information is not yet available. It is found that compared to sRAT, cRAT is more sensitive to the number of physical registers and issue width, however, it is less sensitive to the number of GCs. In addition, beyond a certain number of GCs, cRAT becomes faster than its equivalent sRAT. For instance, this is true when a RAT for 64 architectural and 128 physical registers has at least 20 GCs. This work also proposes an energy optimization for the cRAT; this optimization selectively disables cRAT entries that do not result in a match during lookup. The energy savings are, for the most part, a function of the number of physical registers. For instance, for a cRAT with 128 entries energy is reduced by 40%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信