一种新的二项式展开式近似除法

Infall Syafalni, Rahmat Mulyawan, N. Sutisna, T. Adiono
{"title":"一种新的二项式展开式近似除法","authors":"Infall Syafalni, Rahmat Mulyawan, N. Sutisna, T. Adiono","doi":"10.1109/TSSA51342.2020.9310815","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approximate divider circuit using binomial expansion. The circuit is approximated using the division between A and $L = {2^{\\left\\lfloor {{{\\log }_2}B} \\right\\rfloor }}$, where ⌊log2 B⌋ is the most significant bit value of the divisor B. After that, we use the sum of binomial coefficient to approximate the values. The approximate divider is much simpler and can be implemented using shift and add operations. Moreover, the complexity of the method is $\\mathcal{O}(n)$, where n is the number of bits. Experimental results show that the probability of errors is less than 0.18. The approximate circuit is useful for circuit applications contain rigorous and massive arithmetic operations such as artificial intelligence circuits.","PeriodicalId":166316,"journal":{"name":"2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approximate Divider using Binomial Expansion\",\"authors\":\"Infall Syafalni, Rahmat Mulyawan, N. Sutisna, T. Adiono\",\"doi\":\"10.1109/TSSA51342.2020.9310815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approximate divider circuit using binomial expansion. The circuit is approximated using the division between A and $L = {2^{\\\\left\\\\lfloor {{{\\\\log }_2}B} \\\\right\\\\rfloor }}$, where ⌊log2 B⌋ is the most significant bit value of the divisor B. After that, we use the sum of binomial coefficient to approximate the values. The approximate divider is much simpler and can be implemented using shift and add operations. Moreover, the complexity of the method is $\\\\mathcal{O}(n)$, where n is the number of bits. Experimental results show that the probability of errors is less than 0.18. The approximate circuit is useful for circuit applications contain rigorous and massive arithmetic operations such as artificial intelligence circuits.\",\"PeriodicalId\":166316,\"journal\":{\"name\":\"2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSSA51342.2020.9310815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSA51342.2020.9310815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用二项展开的近似分频电路。该电路是用A和$L = {2^{\left\lfloor {{{\log }_2}B} \right\rfloor }}$之间的除法来近似的,其中⌊log2 B⌋是除法B的最高位值。然后,我们用二项式系数的和来近似这些值。近似除法要简单得多,可以使用移位和加法运算来实现。此外,该方法的复杂度为$\mathcal{O}(n)$,其中n为位数。实验结果表明,该方法的误差概率小于0.18。近似电路适用于包含严格和大量算术运算的电路应用,如人工智能电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Approximate Divider using Binomial Expansion
This paper presents a novel approximate divider circuit using binomial expansion. The circuit is approximated using the division between A and $L = {2^{\left\lfloor {{{\log }_2}B} \right\rfloor }}$, where ⌊log2 B⌋ is the most significant bit value of the divisor B. After that, we use the sum of binomial coefficient to approximate the values. The approximate divider is much simpler and can be implemented using shift and add operations. Moreover, the complexity of the method is $\mathcal{O}(n)$, where n is the number of bits. Experimental results show that the probability of errors is less than 0.18. The approximate circuit is useful for circuit applications contain rigorous and massive arithmetic operations such as artificial intelligence circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信