基于组件方法的参数化WCET分层组合

Thomas Leveque, Etienne Borde, Amine Marref, Jan Carlson
{"title":"基于组件方法的参数化WCET分层组合","authors":"Thomas Leveque, Etienne Borde, Amine Marref, Jan Carlson","doi":"10.1109/ISORC.2011.38","DOIUrl":null,"url":null,"abstract":"Worst Case Execution Time (WCET) computation is crucial to the overall timing analysis of real-time embedded systems. Facing the ever increasing complexity of such systems, techniques dedicated to WCET analysis can take advantage of Component Based Software Engineering (CBSE) by decomposing a difficult problem into smaller pieces, easier to analyse. To achieve this objective, the corresponding analysis results have to be composed to provide timing guarantees on the whole system. In this paper, we express the WCET of a component as a formula, allowing to represent its different computational modes. We then propose a Model Driven Engineering (MDE) approach that derives parametric WCET for composite components from parametric WCET of their subcomponents. This approach gives more accurate WCET estimates than naaive additive compositional analysis by taking into account usage context of components. However, analysis scalability concerns lead us to consider a trade-off between precision and scalability. This trade-off can be specified in the model. The composition of WCET estimations is automated and produces the parametric WCET expression of the composite component under analysis. This approach has been integrated in PRIDE.","PeriodicalId":431231,"journal":{"name":"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Hierarchical Composition of Parametric WCET in a Component Based Approach\",\"authors\":\"Thomas Leveque, Etienne Borde, Amine Marref, Jan Carlson\",\"doi\":\"10.1109/ISORC.2011.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Worst Case Execution Time (WCET) computation is crucial to the overall timing analysis of real-time embedded systems. Facing the ever increasing complexity of such systems, techniques dedicated to WCET analysis can take advantage of Component Based Software Engineering (CBSE) by decomposing a difficult problem into smaller pieces, easier to analyse. To achieve this objective, the corresponding analysis results have to be composed to provide timing guarantees on the whole system. In this paper, we express the WCET of a component as a formula, allowing to represent its different computational modes. We then propose a Model Driven Engineering (MDE) approach that derives parametric WCET for composite components from parametric WCET of their subcomponents. This approach gives more accurate WCET estimates than naaive additive compositional analysis by taking into account usage context of components. However, analysis scalability concerns lead us to consider a trade-off between precision and scalability. This trade-off can be specified in the model. The composition of WCET estimations is automated and produces the parametric WCET expression of the composite component under analysis. This approach has been integrated in PRIDE.\",\"PeriodicalId\":431231,\"journal\":{\"name\":\"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORC.2011.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2011.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

最坏情况执行时间(WCET)的计算对实时嵌入式系统的整体时序分析至关重要。面对这类系统日益增加的复杂性,致力于WCET分析的技术可以利用基于组件的软件工程(CBSE),将一个难题分解成更小的、更容易分析的部分。为了实现这一目标,必须组成相应的分析结果,以在整个系统上提供时序保证。在本文中,我们将组件的WCET表示为一个公式,允许表示其不同的计算模式。然后,我们提出了一种模型驱动工程(MDE)方法,该方法从复合组件的子组件的参数化WCET中派生出复合组件的参数化WCET。该方法通过考虑组分的使用上下文,比单纯的加性成分分析给出了更准确的WCET估计。然而,分析可伸缩性问题导致我们考虑在精度和可伸缩性之间进行权衡。这种权衡可以在模型中指定。WCET估计的合成是自动化的,并产生被分析的复合成分的参数化WCET表达式。这种方法已经被整合到PRIDE中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Composition of Parametric WCET in a Component Based Approach
Worst Case Execution Time (WCET) computation is crucial to the overall timing analysis of real-time embedded systems. Facing the ever increasing complexity of such systems, techniques dedicated to WCET analysis can take advantage of Component Based Software Engineering (CBSE) by decomposing a difficult problem into smaller pieces, easier to analyse. To achieve this objective, the corresponding analysis results have to be composed to provide timing guarantees on the whole system. In this paper, we express the WCET of a component as a formula, allowing to represent its different computational modes. We then propose a Model Driven Engineering (MDE) approach that derives parametric WCET for composite components from parametric WCET of their subcomponents. This approach gives more accurate WCET estimates than naaive additive compositional analysis by taking into account usage context of components. However, analysis scalability concerns lead us to consider a trade-off between precision and scalability. This trade-off can be specified in the model. The composition of WCET estimations is automated and produces the parametric WCET expression of the composite component under analysis. This approach has been integrated in PRIDE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信