每个视角的子地图-为超级映射选择子集,提供卓越的定位质量

Daniel Adolfsson, Stephanie M. Lowry, Martin Magnusson, A. Lilienthal, Henrik Andreasson
{"title":"每个视角的子地图-为超级映射选择子集,提供卓越的定位质量","authors":"Daniel Adolfsson, Stephanie M. Lowry, Martin Magnusson, A. Lilienthal, Henrik Andreasson","doi":"10.1109/ECMR.2019.8870941","DOIUrl":null,"url":null,"abstract":"This paper targets high-precision robot localization. We address a general problem for voxel-based map representations that the expressiveness of the map is fundamentally limited by the resolution since integration of measurements taken from different perspectives introduces imprecisions, and thus reduces localization accuracy. We propose SuPer maps that contain one Submap per Perspective representing a particular view of the environment. For localization, a robot then selects the submap that best explains the environment from its perspective. Our methods serves as an offline refinement step between initial SLAM and deploying autonomous robots for navigation. We evaluate the proposed method on simulated and real-world data that represent an important use case of an industrial scenario with high accuracy requirements in an repetitive environment. Our results demonstrate a significantly improved localization accuracy, up to 46% better compared to localization in global maps, and up to 25% better compared to alternative submapping approaches.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Submap per Perspective - Selecting Subsets for SuPer Mapping that Afford Superior Localization Quality\",\"authors\":\"Daniel Adolfsson, Stephanie M. Lowry, Martin Magnusson, A. Lilienthal, Henrik Andreasson\",\"doi\":\"10.1109/ECMR.2019.8870941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper targets high-precision robot localization. We address a general problem for voxel-based map representations that the expressiveness of the map is fundamentally limited by the resolution since integration of measurements taken from different perspectives introduces imprecisions, and thus reduces localization accuracy. We propose SuPer maps that contain one Submap per Perspective representing a particular view of the environment. For localization, a robot then selects the submap that best explains the environment from its perspective. Our methods serves as an offline refinement step between initial SLAM and deploying autonomous robots for navigation. We evaluate the proposed method on simulated and real-world data that represent an important use case of an industrial scenario with high accuracy requirements in an repetitive environment. Our results demonstrate a significantly improved localization accuracy, up to 46% better compared to localization in global maps, and up to 25% better compared to alternative submapping approaches.\",\"PeriodicalId\":435630,\"journal\":{\"name\":\"2019 European Conference on Mobile Robots (ECMR)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2019.8870941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文以高精度机器人定位为研究目标。我们解决了基于体素的地图表示的一个普遍问题,即地图的表达性从根本上受到分辨率的限制,因为从不同角度进行测量的整合会引入不精确,从而降低定位精度。我们建议使用SuPer map,每个透视图包含一个Submap,代表一个特定的环境视图。为了定位,机器人然后选择从它的角度最能解释环境的子地图。我们的方法可以作为初始SLAM和部署自主机器人进行导航之间的离线优化步骤。我们在模拟和真实世界的数据上评估了所提出的方法,这些数据代表了重复环境中具有高精度要求的工业场景的重要用例。我们的结果表明,与全局地图中的定位相比,我们的定位精度显著提高,提高了46%,与其他子地图方法相比,提高了25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Submap per Perspective - Selecting Subsets for SuPer Mapping that Afford Superior Localization Quality
This paper targets high-precision robot localization. We address a general problem for voxel-based map representations that the expressiveness of the map is fundamentally limited by the resolution since integration of measurements taken from different perspectives introduces imprecisions, and thus reduces localization accuracy. We propose SuPer maps that contain one Submap per Perspective representing a particular view of the environment. For localization, a robot then selects the submap that best explains the environment from its perspective. Our methods serves as an offline refinement step between initial SLAM and deploying autonomous robots for navigation. We evaluate the proposed method on simulated and real-world data that represent an important use case of an industrial scenario with high accuracy requirements in an repetitive environment. Our results demonstrate a significantly improved localization accuracy, up to 46% better compared to localization in global maps, and up to 25% better compared to alternative submapping approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信