{"title":"特殊交变连杆的表面交叉猜想","authors":"Joseph Boninger","doi":"10.1090/bproc/184","DOIUrl":null,"url":null,"abstract":"We prove that a family of links, which includes all special alternating knots, does not admit non-nugatory crossing changes which preserve the isotopy type of the link. Our proof incorporates a result of Lidman and Moore [Trans. Amer. Math. Soc. 369 (2017), pp. 3639–3654] on crossing changes to knots with \n\n \n L\n L\n \n\n-space branched double-covers, as well as tools from Scharlemann and Thompson’s [Comment. Math. Helv. 64 (1989), pp. 527–535] proof of the cosmetic crossing conjecture for the unknot.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cosmetic crossing conjecture for special alternating links\",\"authors\":\"Joseph Boninger\",\"doi\":\"10.1090/bproc/184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a family of links, which includes all special alternating knots, does not admit non-nugatory crossing changes which preserve the isotopy type of the link. Our proof incorporates a result of Lidman and Moore [Trans. Amer. Math. Soc. 369 (2017), pp. 3639–3654] on crossing changes to knots with \\n\\n \\n L\\n L\\n \\n\\n-space branched double-covers, as well as tools from Scharlemann and Thompson’s [Comment. Math. Helv. 64 (1989), pp. 527–535] proof of the cosmetic crossing conjecture for the unknot.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了包含所有特殊交变结的连杆族不允许保留其同位素类型的非核交叉变化。我们的证明结合了Lidman和Moore[译]的结果。阿米尔。数学。Soc. 369 (2017), pp. 3639-3654]关于L - L空间分支双盖的交叉变化结,以及Scharlemann和Thompson的工具[评论]。数学。[Helv. 64 (1989), pp. 527-535]解结的表面交叉猜想的证明。
On the cosmetic crossing conjecture for special alternating links
We prove that a family of links, which includes all special alternating knots, does not admit non-nugatory crossing changes which preserve the isotopy type of the link. Our proof incorporates a result of Lidman and Moore [Trans. Amer. Math. Soc. 369 (2017), pp. 3639–3654] on crossing changes to knots with
L
L
-space branched double-covers, as well as tools from Scharlemann and Thompson’s [Comment. Math. Helv. 64 (1989), pp. 527–535] proof of the cosmetic crossing conjecture for the unknot.