特殊交变连杆的表面交叉猜想

Joseph Boninger
{"title":"特殊交变连杆的表面交叉猜想","authors":"Joseph Boninger","doi":"10.1090/bproc/184","DOIUrl":null,"url":null,"abstract":"We prove that a family of links, which includes all special alternating knots, does not admit non-nugatory crossing changes which preserve the isotopy type of the link. Our proof incorporates a result of Lidman and Moore [Trans. Amer. Math. Soc. 369 (2017), pp. 3639–3654] on crossing changes to knots with \n\n \n L\n L\n \n\n-space branched double-covers, as well as tools from Scharlemann and Thompson’s [Comment. Math. Helv. 64 (1989), pp. 527–535] proof of the cosmetic crossing conjecture for the unknot.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cosmetic crossing conjecture for special alternating links\",\"authors\":\"Joseph Boninger\",\"doi\":\"10.1090/bproc/184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a family of links, which includes all special alternating knots, does not admit non-nugatory crossing changes which preserve the isotopy type of the link. Our proof incorporates a result of Lidman and Moore [Trans. Amer. Math. Soc. 369 (2017), pp. 3639–3654] on crossing changes to knots with \\n\\n \\n L\\n L\\n \\n\\n-space branched double-covers, as well as tools from Scharlemann and Thompson’s [Comment. Math. Helv. 64 (1989), pp. 527–535] proof of the cosmetic crossing conjecture for the unknot.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了包含所有特殊交变结的连杆族不允许保留其同位素类型的非核交叉变化。我们的证明结合了Lidman和Moore[译]的结果。阿米尔。数学。Soc. 369 (2017), pp. 3639-3654]关于L - L空间分支双盖的交叉变化结,以及Scharlemann和Thompson的工具[评论]。数学。[Helv. 64 (1989), pp. 527-535]解结的表面交叉猜想的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the cosmetic crossing conjecture for special alternating links
We prove that a family of links, which includes all special alternating knots, does not admit non-nugatory crossing changes which preserve the isotopy type of the link. Our proof incorporates a result of Lidman and Moore [Trans. Amer. Math. Soc. 369 (2017), pp. 3639–3654] on crossing changes to knots with L L -space branched double-covers, as well as tools from Scharlemann and Thompson’s [Comment. Math. Helv. 64 (1989), pp. 527–535] proof of the cosmetic crossing conjecture for the unknot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信