{"title":"激光熔覆过程中的热场:一个“火球”模型。激光熔覆与电子束熔覆的理论计算比较","authors":"M. Oane, I. Mihăilescu, C. Ristoscu","doi":"10.5772/INTECHOPEN.88710","DOIUrl":null,"url":null,"abstract":"Laser cladding processing can be found in many industrial applications. A lot of different materials processing were studied in the last years. To improve the process, one may evaluate the phenomena behaviour from a theoretical and computational point of view. In our model, we consider that the phase transition to the melted pool is treated using an absorption coefficient which can underline liquid formation. In the present study, we propose a semi-analytical model. It supposes that melted pool is in first approximation a “sphere”, and in consequence, the heat equation is solved in spherical coordinates. Using the Laplace transform, we will solve the heat equation without the assumption that “time” parameter should be interpolated linearly. 3D thermal graphics of the Cu substrate are presented. Our model could be applied also for electron cladding of metals. We make as well a comparison of the cladding method using laser or electron beams. We study the process for different input powers and various beam velocities. The results proved to be in good agreement with data from literature.","PeriodicalId":123873,"journal":{"name":"Nonlinear Optics - From Solitons to Similaritons","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermal Fields in Laser Cladding Processing: A “Fire Ball” Model. A Theoretical Computational Comparison, Laser Cladding versus Electron Beam Cladding\",\"authors\":\"M. Oane, I. Mihăilescu, C. Ristoscu\",\"doi\":\"10.5772/INTECHOPEN.88710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser cladding processing can be found in many industrial applications. A lot of different materials processing were studied in the last years. To improve the process, one may evaluate the phenomena behaviour from a theoretical and computational point of view. In our model, we consider that the phase transition to the melted pool is treated using an absorption coefficient which can underline liquid formation. In the present study, we propose a semi-analytical model. It supposes that melted pool is in first approximation a “sphere”, and in consequence, the heat equation is solved in spherical coordinates. Using the Laplace transform, we will solve the heat equation without the assumption that “time” parameter should be interpolated linearly. 3D thermal graphics of the Cu substrate are presented. Our model could be applied also for electron cladding of metals. We make as well a comparison of the cladding method using laser or electron beams. We study the process for different input powers and various beam velocities. The results proved to be in good agreement with data from literature.\",\"PeriodicalId\":123873,\"journal\":{\"name\":\"Nonlinear Optics - From Solitons to Similaritons\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Optics - From Solitons to Similaritons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.88710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Optics - From Solitons to Similaritons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.88710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal Fields in Laser Cladding Processing: A “Fire Ball” Model. A Theoretical Computational Comparison, Laser Cladding versus Electron Beam Cladding
Laser cladding processing can be found in many industrial applications. A lot of different materials processing were studied in the last years. To improve the process, one may evaluate the phenomena behaviour from a theoretical and computational point of view. In our model, we consider that the phase transition to the melted pool is treated using an absorption coefficient which can underline liquid formation. In the present study, we propose a semi-analytical model. It supposes that melted pool is in first approximation a “sphere”, and in consequence, the heat equation is solved in spherical coordinates. Using the Laplace transform, we will solve the heat equation without the assumption that “time” parameter should be interpolated linearly. 3D thermal graphics of the Cu substrate are presented. Our model could be applied also for electron cladding of metals. We make as well a comparison of the cladding method using laser or electron beams. We study the process for different input powers and various beam velocities. The results proved to be in good agreement with data from literature.