使用线性插值的离散随机优化

Honggang Wang, B. Schmeiser
{"title":"使用线性插值的离散随机优化","authors":"Honggang Wang, B. Schmeiser","doi":"10.1109/WSC.2008.4736106","DOIUrl":null,"url":null,"abstract":"We consider discrete stochastic optimization problems where the objective function can only be estimated by a simulation oracle; the oracle is defined only at the discrete points. We propose a method using continuous search with simplex interpolation to solve a wide class of problems. A retrospective framework provides a sequence of deterministic approximating problems that can be solved using continuous optimization techniques that guarantee desirable convergence properties. Numerical experiments show that our method finds the optimal solutions for discrete stochastic optimization problems orders of magnitude faster than existing random search algorithms.","PeriodicalId":162289,"journal":{"name":"2008 Winter Simulation Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Discrete stochastic optimization using linear interpolation\",\"authors\":\"Honggang Wang, B. Schmeiser\",\"doi\":\"10.1109/WSC.2008.4736106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider discrete stochastic optimization problems where the objective function can only be estimated by a simulation oracle; the oracle is defined only at the discrete points. We propose a method using continuous search with simplex interpolation to solve a wide class of problems. A retrospective framework provides a sequence of deterministic approximating problems that can be solved using continuous optimization techniques that guarantee desirable convergence properties. Numerical experiments show that our method finds the optimal solutions for discrete stochastic optimization problems orders of magnitude faster than existing random search algorithms.\",\"PeriodicalId\":162289,\"journal\":{\"name\":\"2008 Winter Simulation Conference\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2008.4736106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2008.4736106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们考虑离散随机优化问题,其中目标函数只能通过仿真oracle来估计;oracle仅在离散点处定义。我们提出了一种使用单纯形插值的连续搜索方法来解决一类广泛的问题。回顾框架提供了一系列确定性近似问题,这些问题可以使用保证理想收敛特性的连续优化技术来解决。数值实验表明,该方法比现有的随机搜索算法更快地找到离散随机优化问题的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete stochastic optimization using linear interpolation
We consider discrete stochastic optimization problems where the objective function can only be estimated by a simulation oracle; the oracle is defined only at the discrete points. We propose a method using continuous search with simplex interpolation to solve a wide class of problems. A retrospective framework provides a sequence of deterministic approximating problems that can be solved using continuous optimization techniques that guarantee desirable convergence properties. Numerical experiments show that our method finds the optimal solutions for discrete stochastic optimization problems orders of magnitude faster than existing random search algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信