支持多语言交流的基于枢轴的混合机器翻译

Arbi Haza Nasution, Nesi Syafitri, Panji Rachmat Setiawan, Des Suryani
{"title":"支持多语言交流的基于枢轴的混合机器翻译","authors":"Arbi Haza Nasution, Nesi Syafitri, Panji Rachmat Setiawan, Des Suryani","doi":"10.1109/Culture.and.Computing.2017.22","DOIUrl":null,"url":null,"abstract":"Machine Translation (MT) is very useful in supporting multicultural communication. Existing Statistical Machine Translation (SMT) which requires high quality and quantity of corpora and Rule-Based Machine Translation (RBMT) which requires bilingual dictionaries, morphological, syntax, and semantic analyzer are scarce for low-resource languages. Due to the lack of language resources, it is difficult to create MT from high-resource languages to low-resource languages like Indonesian ethnic languages. Nevertheless, Indonesian ethnic languages' characteristics motivate us to introduce a Pivot-Based Hybrid Machine Translation (PHMT) by combining SMT and RBMT with Indonesian as a pivot which we further utilize in a multilingual communication support system. We evaluate PHMT translation quality with fluency and adequacy as metrics and then evaluate usability of the system. Despite the medium average translation quality (3.05 fluency score and 3.06 adequacy score), the 3.71 average mean scores of the usability evaluation indicates that the system is useful to support multilingual collaboration.","PeriodicalId":244911,"journal":{"name":"2017 International Conference on Culture and Computing (Culture and Computing)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Pivot-Based Hybrid Machine Translation to Support Multilingual Communication\",\"authors\":\"Arbi Haza Nasution, Nesi Syafitri, Panji Rachmat Setiawan, Des Suryani\",\"doi\":\"10.1109/Culture.and.Computing.2017.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Translation (MT) is very useful in supporting multicultural communication. Existing Statistical Machine Translation (SMT) which requires high quality and quantity of corpora and Rule-Based Machine Translation (RBMT) which requires bilingual dictionaries, morphological, syntax, and semantic analyzer are scarce for low-resource languages. Due to the lack of language resources, it is difficult to create MT from high-resource languages to low-resource languages like Indonesian ethnic languages. Nevertheless, Indonesian ethnic languages' characteristics motivate us to introduce a Pivot-Based Hybrid Machine Translation (PHMT) by combining SMT and RBMT with Indonesian as a pivot which we further utilize in a multilingual communication support system. We evaluate PHMT translation quality with fluency and adequacy as metrics and then evaluate usability of the system. Despite the medium average translation quality (3.05 fluency score and 3.06 adequacy score), the 3.71 average mean scores of the usability evaluation indicates that the system is useful to support multilingual collaboration.\",\"PeriodicalId\":244911,\"journal\":{\"name\":\"2017 International Conference on Culture and Computing (Culture and Computing)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Culture and Computing (Culture and Computing)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Culture.and.Computing.2017.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Culture and Computing (Culture and Computing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Culture.and.Computing.2017.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

机器翻译在支持多元文化交流中是非常有用的。现有的统计机器翻译(SMT)和基于规则的机器翻译(RBMT)对语料库的质量和数量要求很高,而基于规则的机器翻译(RBMT)则需要双语词典、词法、句法和语义分析,这对于低资源语言来说是稀缺的。由于语言资源的缺乏,从资源丰富的语言到资源贫乏的语言,如印尼少数民族语言,很难进行机器翻译。然而,印尼少数民族语言的特点促使我们引入基于支点的混合机器翻译(PHMT),将SMT和RBMT结合起来,以印尼语为支点,我们进一步将其用于多语言交流支持系统中。我们以流利性和充分性作为衡量标准来评估PHMT翻译质量,然后评估系统的可用性。尽管平均翻译质量中等(3.05流畅性得分和3.06充分性得分),但可用性评估的平均得分为3.71,表明该系统有助于支持多语言协作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pivot-Based Hybrid Machine Translation to Support Multilingual Communication
Machine Translation (MT) is very useful in supporting multicultural communication. Existing Statistical Machine Translation (SMT) which requires high quality and quantity of corpora and Rule-Based Machine Translation (RBMT) which requires bilingual dictionaries, morphological, syntax, and semantic analyzer are scarce for low-resource languages. Due to the lack of language resources, it is difficult to create MT from high-resource languages to low-resource languages like Indonesian ethnic languages. Nevertheless, Indonesian ethnic languages' characteristics motivate us to introduce a Pivot-Based Hybrid Machine Translation (PHMT) by combining SMT and RBMT with Indonesian as a pivot which we further utilize in a multilingual communication support system. We evaluate PHMT translation quality with fluency and adequacy as metrics and then evaluate usability of the system. Despite the medium average translation quality (3.05 fluency score and 3.06 adequacy score), the 3.71 average mean scores of the usability evaluation indicates that the system is useful to support multilingual collaboration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信